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This collection includes work with numerical
hydrodynamic methods of weather forecasting. A
number of articles is dedicated to certain
aspects of objective analysis of meteorological
fields and to development of methodology of
operational forecasting by numerical methods with
the aid of electronic computers.

The collection is dedicated to scientific
colleagues, engineers, weather forecasters,
students of higher courses in hydromc eorologic
institutes and universities, interested in the
problems of calculating weather ahead of time by
hydrodynamic methods.
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IMPROVEMENT OF THE METHODOLOGY OF FORECASTING
THE BARIC FIELD FOR SEVERAL DAYS

S. A. Mashkovich

A generalization is given of an earlier proposed
[2) linear three-level forecast model. The effect
of horizontal turbulent mixing in the vorticity
equation and effects of surface friction are
considered additionally. The system is com-
puterized. An evaluation of the forecasts is
given.

Works [2], [3] proposed a forecasting system, ihich is based

on a linear three-level model of the atmosphere. The formulation

of the problem was based on a method proposed by Ye. N. Blinova.

This system is used in the work of the hydrometeorologic center of

the USSR for forecasting ground pressure for several days.

The present article is dedicated to the improvement of the

mentioned forecasting methodology. Namely, in the vorticity equation

a component describing horizontal turbulent perturbation Is con-

sidered additionally; furthermore, the effect of surface friction

is drawn in.

In this instance linearized vorticity equations and heat

inflow equations are written respectively in the form:

FTD-MT-24-174-70 1



a (1)wseSCs P
1 R- P l ~,

:Mere the following designations are introduced: V - stream :function,

w - vertical component of velocity, t - time, e, A - spherical

coordinates, w - angular velocity of earth rotation, a - index of

circulation, C - p/P, p - pressure, P - 1000 mbar, a - radius of

earth, g - acceleration of gravity, k1 and k - coeffclents of

turbulent mixing, R - gas constant, ya and y - dry adiabatic and

vertical temperature gr.adients, A - Laplacean operator in spherical

coordinates.

Let us introduce dimensialess variables according to the

formulas

S.-,;.', pm-'p'.

a'N24gpcoal

and designate

Then system of equations (1) takes the form (primes on letters

have been omitted):

+-a -- -- r-- +

+- + U+-- a- -tT 90 . d-A= • ( 2 )

We introduce the following designations for the operators:

FTD-MT-24-17?-70 2



Th'n equation (2) can be written in the form:

V z ( Z -:,) -2 .ý G - - r . -V . 6 ( 4 a )

(4b)

We consider processes in the lower half of the atmosphere,

namely: in the laer located between sea level (c - 1) and the

isobaric surface of 500 mbar (C - 0.5).

As boundary conditions we take:

w-kh•%* when - k-- (5a)

dw)- 0 when '-,---0.5. (5b)

Condition (5a) speaks about the fact that at the lower boundary of

the considered layer of atmosphere exist vertical motions conditioned

by the effect of friction in the boundary layer (see El]). Condition

(Sb) designate.3 assumption about the quasi-barotropic nature of

motions in the middle part of the atmosphere. It allows writing

equation (4b) at a level C - C in the form

.-5-0 when 1_•,. (6)

Consequently, the stream function at a level c - C can be

found from equation (6) independently of the solution, o7 system (4).

The solution of the equations (6) is written in the form

.Re aP,). (7)
M. Al

where , + Oi•

pm(e) - associated Legendre polynomial.

FTD-MT-24-174-70 3



Let us break the considered area of the atmospheze into two

layers (see Fig. 1). We will consider a three-level model of the

atmosphere including sea level (C = ), 500 mbar (C = c) and a

2ertain intermediate level • = 1.

* C ýC

_ _ _ _ _ Fig. 1.

~K"

Integrate each of equations (4) over the vertical coordinate

within limits: 1) from C = 1 to C = Cn, 2) from • = to C =

Here indices 1, n, c, mean that the quantity is referred respectively

to sea level, intermediate and mean levels. Wnen the integrals are

not calculated analytically, we will approximate them by method of

trapeziums. Then system (4) with allowance for boundary conditions

(5) can be written in the form:

S9 ' - +. r.w. +rA,
Z ,? -Z . 1 . -11 z A ,a , r. T • " . a , - 0O

S....
11Z . -•Z,.• ~ 2 ..•.-: .,4,•..k - ., =o

! IL . •,-""V -- -, . . .

where A, , - 7. .(

a, = -.:, a.;=r, - .

System of equations (8) is heterogeneous and contains a known

right side of type (7).

Let us find the general solution of uniform equations, which

correspond to system (8) We look for this solution in the form:

4



w, -Re M Aj,.e ( P:-(•) (9)
-. a

nj-, , C).

To reduce the writing let us drop subsequently the indices

n and m. We introduce the designations:

T, M= - -, • , + ( + ',)ife
Lj- - 19ý+ I 2m) + 21n9

Substitute (9) in the system of uniform equations. After

simple transformations we go to the following equations:

[ ±- a "AmI - 6.J18Z.+axmu) --

B.(X. - ,j,,- A:. r,.-. A: - b:(i.+ 4a2,1,,);

A-L,-.ky +8'-',. pA -0;

B . + r,.A:- pA-o. (10)

Equate to zero the determinant of system (10)

Z, -nC C34 C+1 (.1).I

C2 1 +CI CIE.', C, 0

0 cL. -C, - C1I

Here:

C.- --p; C4 -aAn; C. 4,r,

2' CC,-

Clo .r~ky; C 1,-pj ky.
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Condition (11) gives us the characteristic equation for

determination of a, which can be written in the form

a 2+(b +k)o+d+ if -. (12)

where

a- -kop' A-t.] + Xs.)Y - v

+ 4ý.itI - rn[2(pý-.j + ps.) + K4. + PLi + AL(-1 + U);

d ? *-] C2CC4C --y CI2L'k,L +, CC, 06C

C.A.CICuL. CX.CA.pC -t- cwxC~C.C + CC 2C'Cg,;
S22-C3C4 C-;C C2C.CIC,- CtC2C 4C8;

0 a=* C.CCC,; .34.2 -CI
:SJCAICII,C C1C,'C2 + C1CX,C1 + CAC,1;

s..2 -ý-CAC4C; PIr'-CICS; ýpI=C-ýC3Cf,+ CIC 2CI.+ CIC2C,;
1CC-.CV1, +C 2-C3C1. ' COCzA; kJ =.-C1CC 4CG;

Characteristic equation (12) hasp two roots a1and a02*
Accordingly, the general solut~ion of the uniform system of equations

we write tIn the form:

-Re RB B0r~

- eT( ?Be," ,*pI,
,.,z -. W*

P3 b+ C1 CA.I+ C1 CSCS1 (13)
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Expressions of enalogous type are written for wJ. The
particular solution of heterogeneous system of equations (8) we look
for in the form:

iR

Of r- Re 0 (14)
(/- I, u).

Having substituted (14) and (7) in (8), we obtain a Eystem of
heterogeneous algebrai-c equations from which can be found expressions
for coefficients Ai and, B through coefficients Bc. As a result
we obtain the following formulas:

?-Re

'NRe'! RUe + Y) Pm.(S)

J. do a+ (b + d~o, + d +fi,

S+ +Zp, + Y,+Z4 4 +T1 4
5 +),

"ILI - C, CCOC, - IC, CC,.
I&, - C,CAC,. + ,ICC(CC, + C8C,,). (15)

The expression for F is obtained from the above formula for F with
C r'

the substitution a = a

Thus, the general solution for stream function b is written in
the form:

,-e Re ."-" + ,,- ,,+ .,,,*.p:.. (16)

Analogously it is possible to give the solution for w. Arbitrary
constants B , B2 are determined according to initial conditions.

7



The process of their determination coincides completely with that

given in works [2] and [3] and we will not repeat here the corre-

sponding conclusion.

The forecasting scheme described above was computerized.

During calculations values of coefficients were taken as

k2  m 5105 M2/s, k = 140 m, and the remaining parameters were the

same as in [2]. Forecasts by this scheme were compared with fore-

casts according to the scheme given in [2]. As a quantitative

e3timate of the quality of the forecasts we used the relative

torecast error (ratio of mean absolute error of forecast to mean

absolute variability). Forecasts of pressure at sea level for the

North Atlantic were analyzed (zone between 800 west longitude and

100 east longitude and between 200 and 800 north latitude).

Table 1.

Original ___ .- - E
date ; 2 2 I

3 Ill 19 10.1 j 7.7 1.24 0
17111 9.4 7.8 1.8 I .(

'* 22111 1(1.6 82 1.32 1,04
27111 9.2 7.8 1.23 0.92
Is IV 1 I

2 IV 13.3 11,0 1.61 1.13
27 IV 10.6 7.4, 1.40' 0.96
SIV 7$9 5.4 1" 0.96 0.67
6V I1,1 8.3 1.23 0.92

13 V 783 .7.2 .. 0.63 0,72
IsV ,3 6.8 1.32 .1.09
2D V 9,5 J.5 1.12 OAS
23 V 7.7 0.97 0M91
25 V 9.t 7.7 1.46 1.16
30 V 9.5 7;6 127 1.03
Ivi 8,8. 69 1.2 0.94

Average .... 9A 7.9 LZ 1,0

Table 1 gives estimates of the quality of forecasts for four

days ahead: 6 - mean absolute error of forecast (decameter) in the

considered area, A - relative error. The magnitudes of the estimate

are given according to the system in 12] (column 1) as well as

8



according to the given system (column 2). During analysis of the

data of Table 1 one ought to consider that the estimate was made

for regions badly illustrated by the data of observations.

The data of Table 1, and also immediate comparison of forecast

maps composed by both systems testify to a systeritic increase in

the quality of forecast using the new system. From July 1966,

ground pressure has been forecasted using the Lysten. descri'.bed
above.
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FINITE-DIFFERENCE ALGORITHM OF A SOLUTION OF THE VORTICITY
EQUATION FOR THE MIDDLE TROPOSPHERE OVER THE

NORTHERN HEMISPHERE

N. V. Isayev and M. S. Fuks-Rabinovich

A system for forecasting the geopotential at
the middle troposphere using a space (in coordi-
nates x, y) finite-difference approximation,
which provided conservation of the quadratic
integral features is considered (i.e., vorticity,
its square and kinetic energy); integration in
time follows the method of Adams. Charts of the
change in average kinetic energy of forecast
fields H5 0 0 in time are constructed. Results

are given for the calculation of long-range
forecasting of a brief length of time before
forecast phenomenon occurrence according to the
given system.

Introduc bi on

With the numerical solution of forecast equations one of the

greatest difficulties is selecting an algorithm which would provide

stability of multistage calculation. In view of the complexity of

forecast equations and the large volumes of original and inter-

mediate information, it was impossible to show earlier a method of

solving the forecast problem which was optimum in the sense of

resistance and economy. The selection of such a solution can be

made only on the basis of numerical experiments with the forecast

model being investigated.
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In writing a finite-difference model of linear terms one must

take into account that a source of instability can be inaccuracy

in the approximations of both the space and time derivatives. In

a number of works [8, 13) it was shown that a certain improvement

of the quality of the solutioi can be obtained by using a higher

approximation (third order) of the first and second space derivatives.

In this case, however, the source of the instability, connected with

nonlinear terms, is not removed. This type of instability, called

nonlinear instability, is shown in the work of Phillips [12]. The

system, having linear stability (i.e., stability investigated on

the basis of linearized equations), was far from always suitable

for solving nonlinear tasks, for which nonlinear instability can

prevail.

Approximation of Nonlinear Terms of the
Barotropic Vorticity Equation

An attempt to remove instability connected with nonlinear

terms was undertaken In [5]. It was proposed to use a finite-

difference system of calculating the Jacobian, which provided the

conservation of the first integrals of the barotropic vorticity

equation. f

Let us remember that for the barotropic atmosphere the absolute

vorticity of velocity n is the retained quantity and the vorticity

equation can be written in the form

F- (1)0.

where 0 - - + 11 u and v - horizontal components of velocities,

I - Coriolis parameter,

+ 1W +

On the other hand, the general kinetic field energy

(2)



does not change with time under the condition of invariability of

values of the stream function on the boundary of the range of

integration a. In integral form conditions of conservation can be

written in the form:

x, y t)dam-wl, (3)

l--SJ(.Sc. y. t)ds-comt, (4)

moreover, the constants in the right side of these relationships

are a function of time.

It is obvious that during the transition to a finite-difference

type of forecast equations it is advisable that relationships (3)

and (4) be executed with the highest possible degree of accuracy.

However, the majority of existing difference schemes provides

retention of only part of' the integral features of the original

equations (for example, only vorticity velocity U is retained).

Therefore there is great interest in the work of Arakawa [5], which

proposes a finite-difference model of nonlinear terms of the vor-

ticity equation, which provided an integral retention of the vorticity

velocity fl, square of the vorticity velocity FP-JSW(x. y. 1) d, and

kinetic energy T, i.e., all integral features simultaneously.

In the work of Lilly [8] on simplified test models it is shown

that using the Arakawa system various sources of nonlinear instability

are mutually compensated and nonlinear instability is exhausted.

A number of authors [3, 9, 14] expresses the opinion that for

purposes of short-range forecasting It is compulsory not to use

finite-difference systems in which the integral features of the

original equations are accurately retained, but it is possible to

use a system where retention of integral features is provided

only approximately. But for long-range forecasting even of a brief

length of time before forecast phenomencn occurrence, already It Is

extremely advisable to use systems which provide accurate retention

(at least within the framework of the test model) of integral

12



features of type (3), (4) and free from nonlinear instability,

because during multistage calculation in long-range forecasting

nonlinear instability is considerably stronger than in short-range

forecasting.

In the present work nonlinear members of the vorticity equation

were represented in finite-difference form according to the Arakawa

system. Following (8), let us describe briefly this algorithm.

Let us examine the vorticity equation in the solenoid approach

for the barotropic atmosphere (at Z - const)

where A t A', * - stream function, J(C, *) - Jacobian, A - two-

dimensional Laplacean operator.

We introduce the designations:

rix'o- F XFix --~J

- - ,(6)

where F(x) is any of the considered functions.

In (6) let us write down three such difference expressions

for Jacoblan J:

According to £8], each of these relationships provides vorticity

retention, the vorticity square and kinetic energV respectively.

13



If, however, we put together

JAmT(Ju, 1+ Ai+s). (8)

then this finite-difference model will guarantee retention of all

three shown features simultaneously.

Being limited in the approximation of nonlinear terms to the

second order of accuracy, we have the following working formulas

for determination of JA (see Fig. 1):

- - :,%-- "?+)1+ Il(% - ÷)

where h - grid interval.

I j

Fig. I. Grid-
template for

_. calculating non-
linear terms (h -

grid interval).

* j

Approximation of Derivative in Time

In forecasting systems and In models of the overall circu.~ion

are applied various methods of approximating the derivative In time.

Along with the method of central differences, various authors use

the systems of iax-Wendroff [7], Mlyakoda [11], Matsuno [10], Hoyne
[61, and others. According to test calculations In a work of Lilly

[8] a good index of stability goes with the method of Adam1s [1].

For integration In time this work tested the systep of Adams,

14



Mliyakoda, Hoyne, Matsuno and the method of central differences.
The results which were best and very close in quality were obtained
with the system of Adams and Miyakoda.

In Table 1 are estimates of various methods of integration in
time. Along with the change in kinetic energy for the various
systems the mean relative forecast errors by these systems are given.
Averaging took in 75 points. Furthermore, the amounts of divergence
between the different systems are given. The best results were with
the systems of Adams and Miyakoda (however, the divergences between
them are small). Both these systems are more accurate than the
method of central differences (and the methods of Matsuno and Hoyne).

Table 1. Comparison of certain methods of
integration in time.

Method Formula f"I. -",

Ii I I

--- In ge P-, 1r W,• I>Miyakoda - .11 OL71' 7.3 2.5 OI A 3.7: 0.90 12.9

Adams -" . .
j2'lO ' 7.2 9•ao., o

Hoyne e. '- '.- 1.. •,.•3 .2 5.1 0.96 1.2 10 1.0 ' 14.9

tieinevantral vle fdeia

d i f fer - e,' ' x - , 2P V 2.1 03 9. .9 . I :o . W.• 14.2 ; 1.2V 16.4

Not___e. xn - value of geopotential on the n-th

time Interval P-1(r)- value of deriva-

tive in time from geopotential on the
n-th interval; 1W) - absolute deviation
in the kinetic energy in percent, c -

mean relative forecast error; IalCP -

mean absolute error of forecast in deoa-
meters; At - time interval; 7 - numtoer
of days; 8 - parameter in system of
Miyakoda.

15



In using the-methuds of Adams and Miyakoda kinetic energy is

retained to a greater extent in the course of calculation than

otherwise. The method of Adams is distinguished also by its sim-

plicity, it i, handy for using on a computer and requires keeping

only one additional field (as the method of central differences). In

view of the greatest effectiveness and economy we stayed with the

method o-f Adams and used it in this work for Ppproximation of the

derivative in time.

We will giv-Ž the derivation of the Adams extrapolation formula,

limiting ourselves to an approximation of the second order of accuracy.

Decompose functions nl and Jn (values of stream function on
n+1 n

the n + 1 and n time interval respectively) iui a Taylor series

in At and 2At

• .,•, '.•t ',-•t •.(Aty= " ( t)

•~~~~~~~~~ •- -.., . ,,,+.,, +o(A t,)

2 + (At,). (10)

We multiply the first and second relationships from (10) by

certain real numbers a and 0 respectively and combine the results

+ + 4.0, + . (11)

Considering the third relationship from (10), let us rewrite

formula (11) in the form:

"+ - O(A t)(11')

16



In order to obtair: an approximation of the second order of.accuracy,

the term of relaticnship (11') containing At 2 must be equivalent to

zero. For this condition it is necessary that

whence

Substituting these values into expression (11'), we obtain the

Adams formula

2 2 i)+Owl). (12)

Parameters of the Forecast System

On the basis of the algorithm given in previous sections a

system was constructed to forecast the geopotential for H5 0 0 over

a~most all the northern hemisphere (Fig. 2). As in [4] the
barotropic vorticity equation in the quasi-geostrophic approach is

written in the following form:

-LH- + I, H (13)

where H - geopotential, I = 1(0) - Coriolis parameter; m = m(') -

parameter of the increase in stereographic projection; 0 - geographi-

cal latitude,

(a. b). '• d# #a d
WY W W (14)

The original geopotential field H is given in 2181 mesh points
(Fig. 2), having the form of an octagon (51 points in the longest

columns and lines of the octagon and 23 points in the shortest)

with the center of symmetry at the north pole. Nonlinear terms

were approximated according to the Arakawa system, and the derivative

in time by the method of Adams. Equation (13) relative to aH/at

was solved b-y the extrapolation method of Liebmann. In this case

at the edge of the octagonal area a condition of invariability of

17



I.

Fig. 2. AT5 0 0 forecast map for 0300,

24 December 1963 according to data for 0300,
22 December 1963. The solid line outlines the
octagon along which the forecast was resolved.

geopotential with time was assumed. During the calculation no

smoothing operators were applied. The interval in coordinates

was 390 km at a latitude * = 600, the time interval At = 3 hours.

This system resolved forecasts of the H500 fields for periods of

24, 48 and 72 hours. Analysis of the forecast fields will be

conducted below.

Calculation and Adjustment of the Energy
of Forecast Fields

Retention of the integral features provided by the Arakawa

system nevertheless is distorted during the calculation of a fore-

cast for a long period. The reason for this is not only the errors

of extrapolation in time, but a whole series of circumstances.

It is widely known that basic factors limiting the earliness of

18



the forecast model are first of all the simplifications accepted

in the derivation of forecast equations (such as, for example,

adiabaticity, quasi-geostrophicity, and others), and also inaccuracies

in the initial information and boundary conditions. (In forecasting

for the hemisphere or sphere specific difficulties appear during the

examination of phenomena in the equatorial range. Furthermore,

limited computer capabilities force us to resort to economical

storage of intermediate information during the calculation, which

leads to a rounding of the intermediate values and limits the

accuracy of calculations because of the accretion of rounding

errors.)

Here we will describe a numerical experiment conducted to

determine the interval of earliness of forecast of the given system.

Basic criteria for determination of forecast successes were of course

synoptic analysis and quantitative estimation; however, in addition

the following was done.

On every interval in time during the calculation of the fore-

cast the quantity

S -- 1(15)

was figured, where E., E0 are values of the kinetic energy fields

calculated by formula (4) on the n-th and zero time intervals. The

quantity W shows how much (in percent) the kinetic energy of the

field on the n-th time interval changed in comparison with the

initial.

In vorticity equation (13) a term considering horizontal

turbulent exchange was introduced, whereupon this equation took

the form

S( +.---' .(16)

where v + is a plane of Hamiltonian operator; -1r, r - unique

vectors.
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With the aid of parameter V the kinetic energy of the. forecast

fields was adjusted, namely, in the process of calculating the

forecast the quantity v was selected such that the deviations in

energy W would be located within certain limits

(17)

where 6 was assigned as 0.5%.

Until inequality (17) was disturbed, during the calculation of

the forecast the value v - 0 was used. When inequality (27) was

disturbed, v was determined from the relationship

•--mV-, +lU"'h •a.•,- (18)

where K - an empirically selected coefficient, k - number of interval

on which occurred the disturbance of (17). If on subsequent intervals

(17) held, then v did not change. Such intermittent inclusion into

calculation of control parameter v allows regulating the kinetic

energy of the obtained fields and achieve its change within the

limits of 2% (for a lower value of 6 in (18) it is possible to lower

this limit somewhat) with a practically unlimited number of time

intervals. The change calculated by actual data for three days

likewise is located within the limits of several percent.

The authors calculated the geopotential field H5 0 0 for 20 days;

the chart of the change W(t) in time, obtained as a result of numerical

experiments using control parameter v, which was determined by formula

(18) upon disturbance of condition (17), is given in Fig. 3b.

Changes in values of v during the numerical experiment are shown

in Fig. 3a. We see that up to five days the forecast is resolved

at very small values 0 < W s 2104 m 2/s, and in the subsequent

period the utilized values of v fluctuate from zero anu approximately

to 5"105 m2 /s, which agrees well with the values of v used usually

in calculations (see for example, [2]).

The most interesting feature of the chart of Y(t) (Fig. 3b)

is the fact that after five days the quantity IWI somewhat increases
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Se a)
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b)

0 t 2 20t days

Fig. 3. Charts of the change in parameter
lg (y + 10) in time (a) and the quantity En/E0

in time (b). E nr field energy on the n-th timen

interval. 9 0 - energy of initial field.

and the change of W(t) becomes periodic. This periodicity Indicates

that at approximately the fifth day a large role begins to be played

by the balance of purely stray perturbations and damping factors,

realizable with the help of control parameter v. Visual and quanti-

tative estimation of forecast fields likewise shows that four to

five days is the limit period for good Justification of a forecast

based on this syetem.

Such a mechanism of estimating the earliness of forecast

apparently may be applied to other forecasting systems.

Analysis and Estimation of Prediction Fields

As already was indicated above, the calculation of forecasts

was conducted for v - 0 (in contrast with numerical experiments on

determining the interval of earliness of forecast, examined in th>

previous section).

Ž1



During the calculation of forecasts simultaneously by formula
(14) the quantity W(t) was calculated in order to be able tn observe

the degree of retention of kinetic energy in the fields being

forecasted. For a period of two to three days the quantity W(t)
was within limits of 2-3.5%, which indicates good retention of the
integral features for such a period of calculation. As a comparison

let us say that when using the algorithm of forecast calculation

given in [4], the quantity W(t) changed after three days by 15-20%,

which indicates nonretention of the integral features as well as

a large degree of smoothing of the forecast fields.

As an example let us give the results of forecasting H for
48 hours, calculated according to original data for 0300, 22 December

1963 (Fig. 4). The actual and forecast maps for 0300, 24 December 1963

are given in Figs. 2 and 5. (Let us note that we selected the most

difficult example during the period of the two-year test in a system
based on limited territory.)

Fig. 4. AT50 0 original field at 0300

22 December 1963.
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Fig. 5. AT5 0 0 actual map for 0300, 24 December

1963.

We see that values of the geopotentiai In centers were predicted

rather well, although a certain lag from their actual movement is
observed. Cyclogenesis over the Pyrenees and the formation of a
ridge over western Germany (where there is a trough on the original
map) were reflected In the forecast. The absence of smoothing and

retention of integral features guarantees that the forecast maps
will have pressure gradients close to the actual ones.

Quantitative estimates of the example are given In Table 2.

Over the illustrated regions relative error E - 0.83 (over Europe
c a 0.72), whereas forecast estimates calculated by the simpler

system described in [4] are noticeably worse: £ - 1.2-1.4. (In

Table 2 estimates were resolved over al) points of the field.)

An estimate of calculation results for a series of forecasting

examples from this system are given in Table 3. The estimate was
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Table 2. Estimate of forecast success for 48 hours
according to original data for 0300, 22 December 1963
(I - finite-difference model in work [4]; II - in this
work).

C W"le N
Regions 1 .Z....,.. , ,I

Whole range used when
evaluating ........... : 1 132, $ A

Europe .................. 'i ia 9A t6 112.9 1 j k
North America .......... n., .1i t. M3. I2i Ix , on
Asia ................... M 14.1 11.9 12•37 I S! OI X
Dark regions (Pacific, I I

Atlantic and North 71(l
Arc tic oceans ....... 479

Note. lal1cp 061cp - mean absolute values of error

and variability (for 48 hours) respectively;
6, - variability (for 48 hours) at point of
regular mesh; N - number of points of

regular mesh in a given region; ,-k_ -
relative error.

Table 3. Estimates of forecasts for 24, 48 and 72 hours.
1 l i - I

Raw data ,, -"_______ I'paI "" '. ""I' ' ' • '

1500 16xniu l - - - (iS A731 O- 0 AS 0.
1500 17 XII 190- -I 1.02 0.3 ON3
1500 isxii- . - - - 1.11 -9. 1.14
1500 i9 xii im - I 0.72 _ _ 0_.1) GA
0300 14 ViilI -- - - 71I I 0. %711 !- --

0300 is Vill IMS @MOAS 0.0 1 %M0,71 0,774 4X'76 0.7'9 0,30300 isvinm n• o• n'o pt ; •T 7 o. *'0.71 o, w
0300 16 Vill IM6 A W GM; a 0.73l 0,7 GA .71 oUS

0300 sIMX -*

0300 7 VIIIUm t
0300 "x.- -I= *A
0300 % xii I e
Mean ............. ox am = US 0M

Note. ccp - the estimate took in 75 points, coca

points in dark regions, cE - 12 points in

the North Atlantic and Europe - -

relative error).
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over 75 points (cp), as far as possible evenly distributed through
cpthe forecast range, and also through 12 points (cs), located in

the North Atlantic and on the European territory of the USSR.

One ought to note that the examples of forecasts using raw

data for 0300 15-19 December 1965 were specially selected for the

purpose of testing the system on complex synoptic situations.

Analysis of a series of examples of forecasting (12 cases),

calculated by this system, allows us to make the following quali-

tative conclusions. First of all one ought to note that such

important phenomena in reconstruction of fields as cyclo- and anti-

cyclogenesis frequently are provided in forecasts (cases of cyclo-

and anticyclogenesis, conditioned basically by dynamic factors).

Furthermore, the change in pressure in the centers of the baric

formations, and also values of gradients in the pressure field are

correctly predicted. At the same time, a certain (of the order of

20%) error in predicting movements of the centers of the baric

formations is observed. (The last drawback can be in some measure

removed by increasing the order of approximation of the nonlinear

terms.)

In conclusion let us note that this finite-difference algorithm

can be applied even to baroclinic forecast systems.

Bibliography

A. Berezin I. S. and Zhidkov N. P. Metody vychislenly (Methods
of calculations), t. 2, GIFML, M., 1959.

2. Mashkovich S. A., Kheyfets Ya. M. K teoril dolgosrochnogo
prognoza s uchetom vertikal'noy stratifilkatsii atmosfery i
turbulentnogo peremeshivanlya (Theory of long-range forecasting
considering vertical stratification of the atmosphere and turbulent
mixing). Tr. TsIP. vyp. 93. 1960.

3. Pressman D. Ya. Raznostnaya skhema kratkosronnogo prognoza
pogody po polnym uravnenlyam (prostranstvennaya model') (Difference
systems for short-range weather forecasting based on complete
equations (spatial model)). Tr. MMTs, vyp. 14, 1966.

25



4. Sitnikov I. G., Fuks-Rabinovich M. S. 0 vospolnenii
nedostayushchey informatsii v pole geopotentsiala dlya obshirnykh
maloosveshchennykh rayonov severnogo polushariya (Supplementing
insufficient information in the geopotential field for extensive
badly illustrated regions of the northern hemisphere). Tr MJTs, vyp.
10, 1965.

5. Arakawa A. Computational Design for Long-Term Numerical
Integration of the Equations of Fluid Motion: Two-Dimensional
Incompressible Flow. Part I. Journal of Computational Physics,
Vol. 1, No. 1, 1966.

6. Lorenz E. N. Deterministic Non-periodic Flow. J. Atm. Sci.,
Vol. 20, No. 2, Mar, 1963.

7. Lax P. D. and Wendroff B. Systems of the Conservation Laws.
Communications of Pure and Applied Mathematics, Vol. 13, 1960.

8. Lilly D. K. On the Computational Stability of Numerical
Solutions of Time-Dependent Non-Linear Geophysical Fluid Dynamics
Problems. Monthly Weather Review. Vol. 93, No. 1, Jan. 1963.

9. Lilly D. K. Numerical Solutions for the Shape-Preserving
Two-Dimensional Thermal Convection Element. J. Atm. Sci., Vol. 21,
No. 1, Jan. 1964.

10. Mintz Y. Very Long-Term Global Integration of the Primitive
Equations of Atmospheric Motion. WMO-JUGG Symposium of Research and
Development Aspects of Long-Range Forecasting, Technical Note, No.
66, Boulder, Colorado, 1964.

11. Miyakoda K. Contribution to the Numerical Weather Prediction
Computation with Finite Difference. Jap. J. Geophys., Vol. 3, 1962.

12. Phillips N. A. An Example of Non-Linear Computational
Instability. The Atmosphere and the Sea in Motion, pp. 5G1-504.
Rockefeller Institute Press in Association with Oxford University
Press, New York, 1959.

13. Shuman F. G. and Vanderman L. W. Truncation Errors in
Numerical Weather Prediction, Paper Presented at 45th Annual Meeting,
American Geophysical Union, Washington, D. C., Apr. 1964.

14. Shuman F. G. and Stackpole I. D. A Note on the Formulation
a Map Scale Factor. (Lektsil po chislennym kratkosrochnym prognozam
pogody (Mezhdunarodnyy uchebnyy seminar) (Lectures on numerical
short-range forecasts (international educational seminar)). M.,
1967.

26



NUMERICAL SOLUTION OF THE BALANCE EQUATION
IN THE FRAMEWORK OF A QUASI-SOLENOIDAL

FORECAST DIAGRAM OF THE GEOPOTENTIAL
FOR THE NORTHERN HEMISPHERE

I. G. Sitnikov and S. 0. Krichak

A finite-difference system of solving the
balance equation for the northern hemisphere is
given. A series of characteristic features
found with the solution of this equation for
a belt of low latitudes is shown. The obtained
values of the stream function are used to fore-
cast the geopotential field at the middle level
of the troposphere frr 72 hours. An example
of the forecast Is presented.

Various questions connected with the technology of numerical

solution of the balance equations have been illustrated in a number

of works (for example, [1, 3, 5, 6, 7, 8, 9]). Most frequently in

this case the problem is solved for a comparatively small area. Of
the mentioned work.,, only in [8] is a method stated for solving this

equation relative to Lhe nortiern hemisphere. This work establlsheb

a number of characteristic features found with the solution of the

balance equation within the framework of a quasi-soleiioidal system

of forecasting the geopotential on the nortlern hemisphe.-e.

1. The balance equation recorded In a local isobaric system

of coordinates (z, y, p) for a polar stereographic projection has

the form [9]
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Here ' - stream function, H - height of isobaric surface, m -

"1parameter of distortion" of stereographic projection, Z - Coriolis

parameter, g - acceleration of gravity.

It is known that equation (1), considered as the equation for

determination of values of *, will belong to the family of Monge-

Ampere equations referring either to elliptical or hyperbolic type

depending on the relationship of coefficients [4]. A number of

authors [8, 91, making use of the so-called Petersen conversion,

reduce equation (1) to the form

S+ 4 + 2 '-(2)

To solve equation (2) usually the method of series approxima-

tions is used. In this case equation (2) is considered as a Poisson

equation relative to b, considering that values of t in the right

side are known and are determined, for'example, froir the previous

approximation,

We will use as the initial approximation for the solution of

equation (2) the relationship

L-H- (3)

where T - the value of Z on any fixed latitude ¢0 (we took =45)"

Then, substituting (3) in equation (2), we can after solving (2)

determine according to 0 a new approdimation *1; substituting it

in the right side of (2), we obtain i 2, etc.

As a boundary condition, following Miyakoda [8], we take
relationship V i, =rp 4Jrpi where again -l(q), .ga45.

28

L



The obtained field 0 was used as the initial field for the

quasi-solenoidal forecast in terms of a barotropic model on the

northern hemisphere (system proposed in [2)).

The forecasts of * were for 24, 48 and 72 hours. At the end

of each period the H 500 field was Iccated by means of so-called

"inversion" of the balance equation, i.e., of the solution relative

to H for known distribution of 4.

2. For a solution of equation (1) we must require that this

equation be elliptical in all points of the grid. As experiment

shows, the criterion of ellipticity of equation (1) having the form

r .2g'H+P + , (4)

is observed for synoptic objects, at least for moderate latitude,

and with a grid interval of no less than 250 km [4].

Usually the last term of (4) in absolute value is considerably

less than the first two terms, therefore frequently (see, for

example, [8, 9]) a simpler criterion of ellipticity is used.

r= 2,m'AH iP0. (5)

Tiis work assumed criterion (5). On Fig. 1 is shown the

distribution over the northern hemisphere of points with P < 0 for

one of the analyzed examples. The same figure represents the H

field. During the calculation of r values of Laplacian AH were taken

with 6a = 390 km at a latitude of 600 (at a latitude of 100, to which

the extreme grid points reached, the grid interval was about 200 km).

The number of grid points in which equation (1) is hyperbolic attains

here 400, i.e., 18% of all grid points. In this case the over-

whelming majority of these points falls in low latitudes, * < 300.

For the belt of latitudes 4 > 450 the number of points of the

hyperboltcity of equation (1) is 25.
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Fig. 1. Distribution of points of hyperbolicity
of equation (1) for the northern hemisphere for
a square grid with an Interval 6a - 390 km at
latitude =600 and H 500 field at 0300 17 Septem-

ber 1965.

As one would expect, a considerable number of points for which
r < 0 is connected with the central ranges of deep anticyclones

(mainly, subtropical), where AH Laplacians take large negative

values.

It is possible to fulfill the criterion of ellipticity of (5)
for all grid points by correcting the values of AH in those areas
where r < 0. This was done in the following manner. Assume that

at point 0 (Fig. 2) r = r0 < 0. Write criterion of ellipticity (5)

in finite-difference form

r -24 + Po (6)

(here 6H, for example, at point 0 is expressed as (6H) 0 - H1 + H2 +

+ H3 + H4 - 4Ho).
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• Fig. 2. Finite-

difference approxima-
•6 tion of first and second

*• derivatives in neighbor-
f hood of point 0.

X,

*12

2 2Divide both sides of (6) by m 1(68)2. We obtain

S>o: (6a)

Let now O 0 be the new value of y at point 0. Add to each

of the values of yj (i = l; 2; 3; 4) the quantity y0 /4 and determine

new values of yj at points 1-4 as Yi sYi + (yo/4). This means

that the mean value of y in nearest neighborhood of point 0 becomes

constant.

We consider now that the values of field H at points 0, 1, 2,

3, 4 are unknown (designate them go, etc.), and determine them from

the following system (see Fig. 2):

H, +-,? +-,s+ H4 -(,, G-L. j

4+ H. + H, + H.- 4Ff,- ( -Li)j ; - Lj

h A+H..+H...+H. -,4 .H_ -W(ý7,- L,
H,+-.+H,+H. -+ H,+(H, j-L,):

H. +11 f.H + H, H - 4h114 -~('-Lj.

Solving system (7), we find new values of H0, H1, H . 4

such that the value of y at the investigated point (point 0) is

equal to zero. The described method is close to the method used

by Shuman [9].
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We agree to call numerical values of yi in (6a) the

"hyperbolicity" at an arbitrary field point i. Experiment showed

that by the examined means it is possible to blur the hyperbolicity

at the given point over the nearest neighborhoods of this point.

Having applied the described procedure to all points of the grid

where yi < 0 (except the boundary), we decrease the absolute value

of both maximum hyperbolicity yMeOC and average hyperbolicity ycp

over the whole field (1,---f., where the summing is over all N

inside field points in which y < 0) because of the more precise

determination of values of H at points where earlier it was y a 0.

For a further decrease in the values of yMSKC and ycp it is necessary

to make several circuits of the entire map.

We considered the task completed if IymaK I < 0.25. Note that

after the first circuit of the map tije quantity jymaK I was usually

10.0-30.0. For field H shown in Fig. I after the first circuit

YMaKC = -20.3, YCP = -2.75; after the tenth circuit ymaKc= -0.23;

Ycp= -0.02. In this case the maximum difference between the values

of original and corrected field H did not exceed 3 decameters in

even one point. The greatest corrections were necessary on low

latitudes, and regions with weak meteorological treatment.

The modified field H was used as the initial field for solving

the balance equation relative to *.

3. Let us write equation (2) in finite differences for point 0

(Fig. 2), having multiplied the left and right sides by (68)2/ /2

(M0 - value of "distortion parameter" m at point 0). We have

.. ... . .. . . .. (4)

+(im,+ 1'o. -'? oI(-''1 I- L.) +( 4 (t. - )1A (8)
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(here As - value of step of grid in decameters: As = (Is).'0 2, where

6d - 390 km; Z0 - value of Coriolis parameter at point 0). During

the calculation of finite-difference models of the second derivatives

-.i •-4. ; first differences were used with an interval /26a

over the grid (x1 , y 1 ), rotated 450 in comparison with the origina].

Thus, at point 0 we have (Fig. 2):

& Im, Ir±L#

I,, )

Such a recording of the second derivatives is close to "method C"

analyzed in [8]. It is the finite-difference expressions of first

derivatives of type . (q - z, y) taken with an interval of 268,

Laplacian AH with an interval of r26s, Laplacian A* in the left

side of (8) with an interval of 6a.

For calculations from formula (8), furthermore, it was con-

venient to multiply both sides of the equation by 10-4 , considering

new function * .10- 4. The value of function • in dam/s , as
140-4" ( - 0 9

is simple to see, for example, from expression '-,H (g 0.98

dam/s 2), has the same order of magnitude as the values of H in

decameters.

To solve system of equations (8) in all inside points of the

grid the extrapolated Liebmann method was applied, modified in

the following manner. Namely, the series approximations *l 2

etc., developing in the solution process, were substituted in

the right sides of equations (8), not every time, but only after

the fulfillment of some fixed number of iterations N. We took

N - 10. Thus new fields F were formed after the 10, 20, 30th, etc.,

iteration, and the entire process of calculation consisted of two
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cycles "imbedded" in one another. Calculations were conducted
up to the achievement of the final accuracy of 6, in other words,

it was necessary that 1- <.

This technology of solving system of equations (8) is close to
the "accelerated" method (fast method), given in work [8, 9). For

an accuracy of 6 - i dam it was necessary, as a rule, to have 80-100
iterations (the field of right sides was calculated only 8-10 times).
This calculation occupied about 30 minutes of machine time.

In the course of a solution in all grid points where the sub-
radical expression in formulas (8) is less than zero (observance
of criterion (5) leaves this possibility), it Is equated to zero.
It was clarified that the number of points in which it is necessary
to produce this correction is, as a rule, 150-200 (7-9% of all grid
points), moreover these points are distributed mainly on belt of
low latitudes. This effect can be connected with the fact that in

low latitudes the term in the subradical expression

in the right side of equation (2) sometimes acquires large positive
values. It is possible that a correction of field H in accordance
with criterion of ellipticity (4), instead of (5), would bring down
the number of points in which an artificial change in the size of
the subradical expression is required.

We must note one circumstance leading to a reduction of the

rate of convergence during calculation for low latitudes. As
experiment showed, the calculited values of l,, numerically equal
in the geostrophic approach to values H dam, in the quasi-solenoidal
approach seem, as a rule, more than H. This one can be seen well

in Fig. 3. In moderate and high latitudes *0 gradients are less
than H gradients, but in low latitudes, under condition (3), fixing
values of ip on the boundary, 40 gradients grow in comparison with
H gradients. Such a configuration of field 4" in low latitudes
leads to a drop in the rates of convergence of the iteration process
(in comparison with the initial, geostrophic, approach).
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S60-

Fig. 3. Cut along 450 west longitude and 1350
east longitude-Vor the H 500 field at 0300
17 September 1965 and the *0 field, obtained
by solving the balance equation.

4. Let us stop at the question about the inversion of the
balance equation. Inasmuch as equation (1) relative to function

H Is Poisson equation, its numerical solution does not represent
difficulty. Multiply equation (1) by 1m 2 g, exchange the left and

right sides and write it In finite-difference form (see Fig. 2)

H.,"-I

•Av[•+ V2 ;- for - ;+ -4- 2g)(t*+ -2Q] +-

+ dL Gm/*s2 -0 ; -• ai. - 10

4 24

Here I '14 g - 0.98 dam/ -#1-; expressions . .

are solved according to formulas (9). A system of equations of form.
(10) we solve by the extrapolated Liebmann method. To achieve
an accuracy of 6g 0 . 0.5 dam, as a rule about u0 iterations are
necessary. Inversion of the balance equation after a forecast for
24, 48 and L2 hours occupies In overall complexity about o0 minutes

of machine time.
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Inversion of the balance equation was used also in the next

experiment. A system of equations of form (8) was eolved relative

to ý*, and in terms of the found values the inversion immediately

was executed according to formulas (10). The inverted field must,

generally speaking, completely repeat the original field H (except

those points in which either the criterion of ellipticity (5) was

not executed, or subradical expressions in (8) were equated to zero).

The absence of iteration indicates either deficiencies of the

finite-difference recording of (8) or (10), or inaccuracy in the

direct or inverse solution of the balance equation.

Comparison of the profiles of original and inverted H fields

shows that the agreement is entirely satisfactory.

5. A finite-difference system of barotropic prediction of

the geopotential on the northern hemisphere in the quasi-geostrophic

approach is described in [2]. This system was used by the authors

to forecast the values of stream function **, obtained as a result

of solving the balance equation. The balance equation was inverted

following formula (10). In Fig. 4 are given the contours of the

area for which the forecasts were mad4 ýy the system (grid interval

6s - 390 km at latitude 600), and the H5 0 0 forecast field for 1500

hours, 10 October 1961, calculated 48 hours in advance by original

data from 1500 hours, 8 October 1961. For comparison Fig. 5 shows

the H500 field forecast on a quasi--geostrophic model, and in Fig. 6

the actual H5 0 0 field in the same period.

The amount of mean relative error was calculated for 19 points

evenly distributed over European territory of the USSR: for the

quasi-geostrophic forecast for the given period c - 0.75, and for

the quasi-solenoidal - c a 0.68.

Comparison of quasi-geostrophic and quasi-solenoidal forecasts

calculated on a barotropic model for the northern hemisphere allows

hoping that during tests of quasi-solenoidal forecasts under

operative conditions satisfactory results will be achieved.
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Fig. 4. H5 0 0 fore-

cast map for 1500
hours, 10 October
1961 based on
"original data for
1500 hours,
8 October 1961,
calculated accord-
Ing to a quasi-
solenoidal model.
A continuous line
shows the contours
of the area for
which the fore-

~ cast was made.

Fig. 5. H5 0 0
- .forecast map for

"1500 hours,
10 October 1961
according to
original data from
1500 hours,
"8 October 1961,
calculated accord-
Ing to a quasi-
geostrophic model.
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Fig. 6. Actual H5 0 0 map for 1500 hours,

10 October 1961.
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THE INVESTIGATION OF HEATING IN THE STRATOSPHERE
USING NUMERICAL EXPERIMENTS'

B. Barg and S. A. 11ashkovich

The evolution of temperature perturbation
in the stratosphere is studied. The initial
equations were proposed by A. S. Dubov [1] for
forecasting in the stratosphere. The qeustion
abou" the original temperature perturbation is
considered. A finite-difference approximation
of equations is Lotated, a numerical method of
solving the problem is formulated, and its
calculating stability is investigated. Results
of calculations for different variants of the
initial temperature perturbation are presented.

From liter' e it is known that at the end of winter as well

as in the beginning of sprite ½n the stratosphere there can be sudden

warming trends. This phenomeaon, discovered by Sgherhag [10] and

known by the name "BerlJIn phenomenon," A-as then confirmed by further

observations and became the object of numerous investigations (see,

for example, [6, 9]).

The majority of investigations were in first place tc establish

possible reasons for these warming trends. This work does not

consider these questions and primary attention is given an attempt

'The present article is the result of the joint work of the
Institute for the Study of Large-Scale Weather of the GDR Weather
Service and Hydrometeorologic Center of the USSR.
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to study the evolution of the warming trend and its values. In

other words, it assumes that temperature perturbation in the

strat6sphere is suitably described by a priore methods, and its

further development requires the use of hydrodynamic equations.

Outwardly such an investigation is similar with the work of

Khinkel'man [4], Berkovskiy and Shapiro [7].

However, in contrast with the investigations in [7] we limit

ourselves to an examination of processes in the stratosphere.

Therefore we can use the work of Dubov [I], in which approximate

forecast equations for layers of the atmosphere with a high

statistical stability are obtained, I.e., equations which are

suitable for dynamic examination of stratospheric processes. One

ought likewise to show that results obtained in [1] allow suffi-

ciently accurate passing from equations in a three-dimensional space

to equations for a two-dimensibnal case. This circumstance from a

mathematical point of view is essential, since it noticeably facili-

tates calculations.

According to Dubov [1], we will begin from the following

equations:

o g - (Z Az)--I ( 4) zi "
[ . A- ,-.7)+ .( 1.

TF 7 (2)

Here and subsequently we accept the designations: a - height of

considered isobaric surface, T - temperature on this surface, g -

acceleration of gravity, I - Coriolis parameter, $ - Rossby
parameter, A - Laplace operator, (c, d) - Jacoby operator, Y a - dry

adiabatic gradient, a - radius of earth.

Initial Conditions

If equations (1), (2) are used to solve the model problem, then

it is hardly expedient to use as initial conditions the data of

observations for practical synoptic situations. It is more useful
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to use a problem which gives the initial fields of meteorological

elements in the simplest form. How must the basic fields, and

consequently, the initial conditions look?

* ' A good correspondence to actual conditions would hardly be

achieved if mean maps, for example mean monthly maps, would be used

as these fields. It is known that in averaging important parts of a

field are lost, such as the intensity of stratospheric polar eddy.

It is possible to approximate more the practical relationships in the

atmosphere if we suitably stylize the determined observable typical

states.

To do this the chart shows profiles of the geopotential and

temperatures for 50 mbar along a definite meridian at 0000 hours

Greenwich time for 5, 16 and 17 January 1958 (Fig. 1).

2040-

2020

2000 ,

1940

0 AP 20 M0 0 s0 e6 70 -81h,

rip 1. Approximation of H5 0 meridian profile with the

aid of formula (6). 1 - meridian distribution by data of
observations; 2 - distribution calculated by formula (6).
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Let us present now the observed profiles using an analytic

expression. If we do not require that the approximation be the

best, then there are definite degrees of freedom which one could

use.

From observations which must generally describe the polar

vortex, it is possible to borrow the following facts:

a. At the pole wind velocity is zero.

b. Wind velocity turns into zero between the equator and 300

north latitude.

c. Maximum wind velocity is between 60 and 75° north latitude

(in our formulas it will be accepted that the maximum lies at 600

north latitude).
/

d. Undisturbed wind velocity has only zonal component u.

These assumptions, and also the assumption that the initial

undisturbed field depends on longitude X, allow selecting for wind

velocity a parabolic profile

where u is the zonal wind velocity, " - polar angle, 0,1-°0';

02 60 - 20.,.; 0.,, = 300.

From expression (3) follows

'MaKl" •murn( )

Applying the formula for geostrophic wind

'1 ' 7 (5)

we obtain from (4) the expression for the height of the 50 mbar

isobaric surface
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" , 2)sfn c+2Icoshal csinI-c•osl+z (6)

(z is expressed in decameters, Z0 - 820 dam).

In Fig. 1 it is evident that the selected parabolical meridian

wind profile will give a distribution of H50 which agrees well with

the data of observations. Such means can also obtain the expression

for approxim.tion of temperature. From examination of the field it

is evident that the investigation must embrace the range from the

pole to ft=6°. Accordingly the temperature field we will approximate

also in the zone between 0=Wr and 0-60'; in this case the formula

for temperature distribution has the form

r t + A cos 3,50 + 273. (7)

where to = -700, A = 120. As can be seen from Fig. 2, this approxi-

mation is sufficiently accurate.

These expressions approximata undisturbed basic fields. In

accordance with our original thesis we assume that local temperature

perturbation can be arbitrary. From systematical considerations before

we describe how this perturbation is assjgned, we will give certain

information from the technology of a numerical solution. On a map

of the northern hemisphere in stereographic projection (with the

section covering 600 north latitude) is imposed a regular grid with

42 x 42 points (Fig. 3). The pole dces not coincide with the grid

point, but is in the central point of the grid. Grid interval e

is 330 km at 600 north latitude. This regular grid is used as the

system of coordinates. In this instance temperature perturbation

T* can be given by the formula

T= A *cos (B*-r +Xr"-1x-c+YY2 8

Here x8 , y8 - coordinates of the center of the temperature

perturbation, expressed in units of length equal to the grid interval;

A*J B*, K* - arbitrary constants, r* - radius of temperature

perturbation, likewise expressed in grid intervals.
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0 .0o0 X 40 so 60 701 so

Fig. 2. Approximation of meridian of temperature
profile on 50 mbar isobaric surface. 1 temperature

profile from the data of observations; 2 -profile

calculated by formula (7).
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Ii 1 ,7 7Z

Fig. 3. Regular grid used for calculations.

From formula (8) it is evident that perturbation has a circular

formula relative to a regular grid (on the spherical earth it

acquired a pear shape). The perturbation lies so that it would be

as far as possible from the edges of the considered area on which

artificial boundary conditions are aftigned (az/at or 9T/St equal

to zero).

Approxiration of Derivatives in Time.
Stability Analysis of Solution

When selecting a numerical method for solving the problem at

hand, an important question is the finite-difference approximation

of derivatives in time. Therefore it is useful to estimate the

accuracy of the solution with different means of approximation of

these derivatives. Such estimates can be obtained by comparing

46



an accurate solution with the numerical. For the above problem it

is possible to find an accurate solution in the case of initial

conditions of a special form. Below is stated the means of obtaining
the accurate solution and this accurate solution is compared with

the numerical with different variants of approximation of the

derivative in time.

We will consider quasi-solenoidal motion and assume that stream
function * is connected to geopotential x by the following approxi-

mate relationship:

, 8 (9)

Then the system of equations of our problem in spherical

coordinates is written in the form

dion •* .0 I '. R ,m T Ol, ), ( 10 )

where T - ZT*.

We assume that the stream function and temperature function

can be presented as the sum of two components: zonal (not depending

upon geographical longitude and time) and nonzonal. Then we write

that

Zonal component i we represent by the formula

-NO) - ,(Ola Cos 0, (12)

whe-e c - index of circulation. Then from the equation of statics

and of relationships (9) we obtain the following expression for the
zonal component of temperature:
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Writing TO for the level (• - of interest, we obtain

"C-• el cCCO, (14)

where

e- - c,--• .d .

Let us substitute now relationships (11), (12), (14) :n equations

(10):

( -', ÷'), (15)

where

ka- 2(a +}a) + -Lk) "

k,- ( 7. " 7)R?,"

We accept subsequently that k and k2 can be approximately

considered constants.

We assume that in initial moment t = 0 the nonzonal parts of

stream function iP' and temperature T*' are represented by the

formulas:

- Re Au':'(I),
.- Re Bog'P.0(#), (16)

where Pm is an adjoint Legendre polynomial.n

Accordingly look for the solution of system (15) in the form:
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- Re A(t¥"hP.(o).
'- Re A(t)O" l RO). (17)

Having substituted (17) and (15), we obtain the usual linear

differential equations in time:

y-- +(ay-h,)iA - a,,m- O.

YW - A,2 - y),,A + (2(,+-w)-,,a B.

y--(N+ I. (18)

It is easy to see that the solution of system (18) can be obtained

in analytical form. Namely, let:

A -- ,•' .B , Bja 'I.(19)

Substitution of (19) into (18) gives:

1L(2 - y), -y a. -a , + ) + aY18..

(k, +y ay-#)A _B,•,. (20)

Equating to zero the determinant of system (20), we obtain the

characteristic equation for determination of a

(21)
where + 2- + a y + kX

q- y) + (" + M, r- !Ls " .

Consequently, the solution of equations (15) is written in the

form:

-e- "' - +

7'umRe(kA m(II)+~e (P0o22

where k [k, - y (a a and a - roots of the characteristic

(1) C,) U),
equation; *--I,.
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Let us go now to the solution of system (18) by the numerical

method. Namely, let us examine two variants of approximation:

1) explicit scheme with replacement of derivatives in time by

"forward" differences, 2) implicit scheme.

In the first variant derivatives in time are represented in
the form:

-t7- 1 (23)

and all remaining terms in equations (18) are written for preceding

instant t. We set

I~~ -Ay,' . B,•,.B a --a,. (24)

Then considering expressions (23) and (24) equations (18) will

take the form:

I( " - I I, - -- t1h-, -- (k, --- y)A,];
08'"- a --2. t- - y.2 - 2( + .- )Ij

From (25) can be obtP•ned the following equation for

determination of B2 /A 2 :

The quantity B2 /A 2 can be both real and complex. Let us write

down the expression for B2 /A, in the form

Al f . . (27)

while

when fl,O.

Substituting (27) in (25) and separating real and Imaginary

parts, we obtain after simple transformations:
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• Y IN - " 2 8 )

tgat-- (29)

V -- ,+Iv,. (30)

It is obvious that when

+ +

we have vt<O and, consequently, in accordanne with (29), (30) ampli-

tude grows in time.

Let us examine now the solution in the case of the implicit
scheme. In this variant derivatives in time also are approximated

by the formula (23), however all remaining terms of (18) are written

for the subsequent moment of time t * 6t. Using (23) and (24), we

can write system (18) in the form:

ly - i(k, - 2 ,)l tjA 3 + tks a tB,-- yAlr-8'.
( y -1A, a [a= y - 2(2 + &,)I IB, - 0 (2. -. y~tn I tA, Y8-8.60..,', (31)

From (31) we obtain the equation for the determination of

B2/A 2 , completely coinciding with (26). Making use of expression

(27), after simple transformations

- Y, (32)

Obtained formulas allow evaluating the accuracy of the numerical
solution. For this let us compare results of calculation for

accurate solution of (17) and (19) with calculations from formulas
(28) and (32).

Calculations were produced for the following values of

parameters: 6t w 1 hour, re - 2000, 2500s y a 0s m a I 2s
5, 10. Very important is the selection of the values of circulation

index and its derivative in the vertical coordinate. The last
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quantity is substantially different in different seasons. Inasmuch

as sudden warming trends in the 3tratosphere are observed predomi-

nantly at the end of winter and beginning of spring, the value

da/dý referred to this time of year was taken, namely

do

Results of calculations are presented in Table 1. The table

shows quantities characterizing the change in wave amplitude in the

time interval 6t = 1 hour. In the case of an accurate solution there

exist only real roots of characteristic equation (21), i.e., 0,=-.

therefore wave amplitude does not change in time. With the numerical

solution method there appear changes of amplitude in time. These

changes seem greatest for small values of n, so for n = 2 in the

hourly interval amplitude changes by 0.3% of the initial amount.
Using "forward" differenceo there is a growth of amplitude; this

variant of solution seems unstable in calculations. In the case of

the implicit scheme, stable in calculations, a decrease of amplitude

in time is noted.

Table 1. ._.. ... ..

kauoate solution "Forward" differenye Implioit soheme

2 1,0 • 1.0030 1.0014 0,9970 0,99M6"
5 1.0- - 1.0 ,0006 1.0000 .O9OM 10000

to 1.0 1.0 1001 1.000 • ,9909 1.0.0l

Calculation System

Passage to a Cartesian system of coordinates is carried out.

A scale factor is introduced by the formula

2(33)
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where c-a(I+sin"),)p--E-!;ip - geographical latitude on which the plane

of projection lies; r - distance of considered point from the pole in

the plane of projection.

The Laplace operator in the right sides of (1) and (2) is

approximated by the expression

The arrangement of points is shown in Fig. 4. Terms in the

Jacobian are represented in the form

WX %-[- •+2(a,- 013)+ +1.-,,] [P +(5

We introduce the designations:

A Z-=2 .Az ; (,. •) -- (- ,-- - * (36)

The expression of the Laplace operator in the left sides of (1)

and (2) we approximate by the formulas:

"A-" 7- gj(8Zz +8z2+ýz, +.z4 - 4 z.)

(37)

while

We-will use the MTS system for all quantities except geopotential z;
we will express it in decameters. Designate = 10 X, then equations
(1) and (2) can be represented in the form:

I log I Ni rzs

* +1 j•,fj4,(Tz]., -. (38)
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I - " 1 log t -*c- -5 1 i+ '"20k)

where nt----.. n - number of time intervals in a twenty-four hour

period.

Fig. 4. Arrangement
+ +2 +6 of points in the

calculation of Laplace
+9+3 +3 0 +0P and Jacoby operators.

+ +, +4 ÷s

The solution of equations proceeds as follows:

a. The right sides of equation (38) are resolved.

*1 b. Determine 6z In decameters by solving the Poisson equations

and calculate z for t + 6t. As boundary conditions with the solution

of the Poisson equation we take bzI,,-0 (first boundary problem or

Dirichlet problem).

c. Calculate the right side of equation (39) using zi,-a.

d. By means of the colutions of the Poisson equation with

boundary condition 6TIKp=O determine 6T and find T,.÷+u (then

everything is repeated).

Solution of Poisson Equations

It is known that in solving forecasting problems which are close

to ours the use of the Poisson equation gives results which are

physically insufficiently satisfactory. In order to understand the

difficulties it is necessary to take into account that in the

considered case it is necessary to solve an elliptical equation
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iI
with a known right side. In this instance the effect of perturbation

is extended with an infinitely high rate and each point of the field

instantly feels the effect. From the viewpoint of meteorology this
leads to unrealistic results. In order to avoid these effects, the

Poisson equation is replaced by the Helmholtz equation. The basis

of such a replacement is different arguments, which bear partially a

physical character, partially a mathematical. A survey of these

questions can be found in [5].

In a more of less arbitrary passage to the Helmihoitz equation,

written in the form

1A (sh)j F (40)

(A in dimensionless variables), the question arises about determina-ii1 tion of (ek)2 There are no definite rules on this and the question

can be solved only experimentally. However, it is not clear what the

results obtained using the solution of the Helmholtz equation (40)

with an assigned value of (ek)2 should be compared with.

To solve equation (40) we use a method proposed by S. V.

Nemchinov [3] for the case of a right-angled grid. The advantages

of this method are obvious: on one hand, because of the use of

recurrent formulas a minimum number of memory cells is necessary,

on the other a relatively small number requires arithmetical

operations. To this one ought to add that the solution has a high

degree of accuracy, which when using iteration methods can be

achieved only with great difficulty, and that the calculating process

is stable with respect to rounding error. The solution with a change

in k does not require a change in the program (in the case of k = 0

the solution of the Poisson equation is automatically obtained).

In the practice numerical forecasts are satisfied by attempts

to obtain an optimum forecast and in this manner determine (sk) 2 .

In order to use this experiment in this case a special investigation

would be necessary. Therefore we used another way.
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Several years ago S. L. Belousov [2] proposed a means of

solving the Poisson equation, which since then has been successfully

used. The formulas are best of all called a local solution; we will

use this term subsequently.

The solution of the Poisson equation

Uz (41)

at known boundary values can be presented in the form

,ds

2r, (42)

where ý0 - desired magnitude of the function in the center of a

circle of radius R.

For calculations according to formula (42) Belousov used the
method of series approximations. As a first approximation he assumes

that the contour integral in (42) is absent, and to calculate the

first integral in (42) he used the formula'

*I~ 2{f+ (1 F2 F, 16 -~F+.. F (43)

Since the quantity is found in all poants, the approximate value

of the contour integral in (42) is calculated. In the contour

integral the value of * is substituted; the second approximation0
is calculated by the formula

~ V)

'If we consider a relatively small neighborhood of point 0, then
the approximate value of the integral can be obtained by approxi-
mating the Laplace operator by the formula

In this case the Laplace operator was written for 9 points (from
zero to 8th), and the values of * at points from the 9th to the 20th
are taken as zero. The solution of the obtained system of algebraic
equations leads to formula (43).
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We used this means of solving the Poisson equation. Not stopping

here on questions connected with the use of this, we refer the

reader to [5, 8].

It is possible to compare results for two variants of the

solution of system (38), (39): 1) using the Helmholtz equation for
2various values of (es) ; 2) using the local solution considering

two approximations. It is established that results will well agree

if in the first case we take (ek) = 0.4. This value already has

been widely used in actual numerical forecasts. Thus the local

solution can be successfully used.

Preliminary Results

Solving the problem by computer, initially a finite-difference

approximation of derivatives in time with the aid of "forward"

differences was used. HoweverN, the calculations showed that despite

a decrease in the time interval t, 30 minutes, the system is unstable.

At t = t0 + 48 hours stray waves show up and intensify, thus hampering

the interpretation of results. This agrees with theoretical estimates

obtained above. Therefore in basic variants of the calculations an

implicit scheme was used. The time interval in this case could be

taken as 3 hours.

Calculations were carried out for the following values of

parameters, determining temperature perturbation: A* = K* = 60;

B = 3.6; r* S 5. In this case cases were considered when

X = Y= -7 and x. = Ys = -11.9. The basic field of flows was

given by the values of parameters:

1) c, - - lee; 12:! USI" 0M
2) C,--- C2---; u.-- Im/s.

On the basis of results of calculation the following preliminary

conclusions can be made.
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1. A temperature perturbation of a showtn intensity can
substantially influence circulation in the stratosphere. It does not

lead therefore to a breakdown of the polar vortex.

2. As a result of temperature perturbation a perturbation in

the geopotential field is developed, the amplitude of which grows

during the considered time interval, while the amplitude of the

temperature perturbation diminishes.

3. The maximum of the geopotential perturbation remains during

the first 48 hours at the same latitude on which was the temperature

perturbation. Then in all cases the geopotential perturbation shifts

to the north, which agrees with the data of observations. However,

the temperature perturbation remains at the original latitude. The

last result strongly differs from processes observed in nature. This

difference is partially conditioned by simplifications of the model,

and partially by neglecting effects connected with the ozone.

4. The shift of the geopotential perturbation to the north is

expressed stronger the better the polar vortex is developed, i.e.,

the greater the meridional wind shift.
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ON THE APPLICATION OF THE FILTRATION THEORY OF RANDOM
PROCESSES TO SOME PROBLEMS OF OBJECTIVE ANALYSIS

B. V. Ovchinskiy

Formulas for calculating weighting functions
of optimum interpolation and smoothing meteorolog-
ical elements if correlation functions of the
"true" quantity (signal) and errors of observa-
tions (noise) are known.

I. Formulating the Problem. Derivation
of Basic Equations

As Is known the data of observations contain random errors.

During optimum interpolation it is necessary to consider this and

treat the meteorological element at an interpolated point free from

these random errors.

Even when the field of meteorological elements is presented

rather fully, for further analysis it is useful to remove from the

field unsystematic errors, i.e., smooth the field.

As has been accepted in objective analysis, a field of meteoro-

logical elements Is given at discrete points •.' 2" ... J . Each

of the quantities i, except the true value gi, still has errors E.,

so that

X, + .. (1)
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Concerning errors ci, they can in the simplest case be either

purely random, or contain small-scale fluctuations, of the "noise"

type, as happens in radiophysics.

In objective analysis errors were taken as purely random and

satisfied the following conditions [2]:

1) mathematical expectation (mean) error c. is equal to zero,

i.e., E i) 0;

2) errors ci are not correlated with true value of the meteoro-

logical element E(cigi) - 0;

3) errors c. do not correlate with each other, i.e., E(Vit.)I 0 when i 4 j.

If we treat more broadly the quantities ci and include here

small-scale fluctuations, then we must reject the assumption about

the noncorrelatability of the c.. In meteorology this circumstance

was studied by Thompson [8], using the apparatus of the theory of

filtration of random processes for optimum smoothing of meteoro-

logical fields.

Thus we assume that gi and c. are stationary random quantities,

which obey conditions 1) and 2). The correlation functions of g;

and c. will be:

'E(saj) - R

where - distance between i-th and j-th stations.

In relationship to correlation functionv R (T..) and R (r..)g a•j £ v:
let us note that radius correlation E. is considerably lesE than the

radius of correlation of the gi. This metns that the connectIon

between the c. weakens much faster with distance (or w.th tlh&,

than the connection between the gi.
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In accordance with the theory of optimum interpolation we put

together the expression

go -' ,1 Pi Z,-,•g, + ,,)e, ( 2)i- A

and select weights P. such that dispersion

•/ go -- ,(g, -+-- ,p,' (3)

is minimum. After this the interpolated value of the meteorological

element will not contain "noise," and thus is a smoothed quantity.

Let us suppose, as usual, that ýi are standard deviations and,

according to the first condition relative to errors ei, we have

After this formula (3) can be brought to the form:

N N N NN
P E(gl) -- 2 R,('oP.)P. + , R),u,) +, R#(¶cj)PgP.. (4)

We divide both sides of equality (4) by a2 and turn to standard-g
ized correlation functions pi, for the signal ("true quantity") and

V.j for errors ci ("noise"'), then formula (4) can be rewritten

N N N A
I- -,.P, + Z., P.p,'P +,- • I r, ;PP, (4')

A"i C 1.1 j-I

20 2

The quantity in radiophysics is called the signal-to-

noise ratio. Subsequently we will designate it by X. For minimum

J it is necessary that aJ /aP =. Hence we obtain a system of

linear equations for determination of weights

ýJ(Pij+ k.,,,)P-N. 1-. 1 .. 2, • (5)
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Assuming that errors e. do not correlate among themselves, i.e.,

they are purely random, then function v.. can be renresented as:

1_| , if ij
, if 1#/. (6)

This case corresponds to the fact that in radiophysics it is

accepted to say "white noise" [6]. For white noise equation (5)

can be rewritten in the form:

YP÷p,+)-p•. (5')

Formula (5') coincides with the usual equation used in objective

analysis [2], because n = - a /a work of Thompson [9]

expresses certain considerations about A. The signal-to-noise ratio

fluctuates fron A = 0.1 to, = 0.33.

If weights P. are determined according to formula (5), then

interpolation error, aiccrding to (4'), can be found by the formula

N.

Let us note that formula (7) contains the correlation function

of noise vij. In order to explain in general terms the effect of

the noise part of the field on interpolation error, we set X = 1

and 1i. = vi,. Then from equation (5) we obtain

A

V~ 
'/

i.e., weights P. will be half as large as in the same "noiseless"J
field, and from formula (7) it follows that interpolation error

| 'V

increases and will be ,,=s" 5 ),.%O This increase in interpolation

error for such a noise field can be explained by the fact that there

are two identical superimposed fields here.
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Let us turn again to system of equations (5) for determination

of weights of optimum interpolation. Let us write this system for

the case when the data of observations have been taken through equal

intervals in space.' This simplified scheme will help us to investi-

gate in more detail the structure and features of the weighting

function, which is the basic task of this work. Below we will

examine the case when observations of the quantities in meteorolog-

ical elements are continuous. Thus let us assume that the quantities

in meteorological elements are given through identical

distances from one another, and for simplicity let us take these

distances as one. Then the correlation function can be written:

E(gg) - Rfi(I -JI),

For standardized correlation functions let us introduce new

designations:

After this system (5) for determi~ation of weights o- optimum

interpolation can be replaced by other system of equations

SN
VIr/kI r4k i)IPji-r,(k), k-I, 2, ...2 N. (8)

Equation (8) in statistical dynamics of pulse systems 15] is

called a discrete analog the Wiener-Hcpf equation.

Let us assume that assa resuilt of obsrrvatio;.s &ll pcssible

values of have been obtained including " Our problem as before

is the determination of go on the basis of the observations. In

10f course, we need not hold strictly the seleotion of observa-
tion points through equal intervals. Deviations are possible in
sucn quantities which will not substantially affect the value o+
the correlation function.
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this instance we say that we smooth 0" Formula (2) will have the

form:

j V -17 ,°

The distinction from formula (2) is that the summing begins

from i - 0.

System of equations (5) for determination of weights Pi remains

as before with the difference that the summing must begin with i = 0;

j = 0. M. I. YudIn proposed two formulas for smoothing meteorolog-

ical fields, which in form correspond to expression (9) and are

written thus [10):

R o,3H, + o, , H& + 0,08(H, + H1,,).

The stations with the numbers 1-6 lay along the circumference with

center H0 ; and stations 8, 11 were outside the circumference symmet-

rical to the origin of coordinates.

Let us examine the problem of smoothing meteorological elements

u(x), when x takes continuous values. Of course, for discrete

values of x the quantity U(x) must coincide with the observed quan-

tities 2' 1 ... ' N-9 i.e., u[0l = 10" .''j U[1] = ý1" ".'" u[N]

= N'

Just as earlier we assume U("), except the true value (signal)

g(x), still contains random error (noise) e(x). Furthermore,

;(x) -g(x) + (x).

The smoothed out value of U(0) must not contain noise and its
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approximate magnitude by analogy with (8) will be'

go • 2 ;)f~x~x. (10O)

Let us find such weight function f(x) that the mean quadratic
error of approximate equality (10) is minimum [11]

J2(f)-E go-.jjg(x)+a(x)Jf(x)dx} (11)

We transform preliminarily formula (11), making use of the fact
that g(x) and e(x) are stationary random functions, not correlated
with one another, i.e., E[e(x) g(x)] = 0. As a result we obtain

g()-2fRrxfxx +1 iI'g(x-
a-Y)

+ R.(x - y) (f(x)d(ydxdy. (-12 )

In order to find the minimum functional C2(f), it is necessary

in formula (12) instead of f(x) to substitute f(x) + yo(x). The
necessary condition of extreme of the functional will be [3]

Having completed the calculations, we pass to the integral equation

for determination of f(x)

t[R,(x - y) + R,(x - y)]f(y)dy - Rix). (13)

It is possible to show a sufficiency of condition (13), in
other words, if f(x) satifies integral equation (13), then J2(f)
will be minimum [7]. Equation (13) is widely used in the solution

of problems of automatic control and is called the Wiener-Hopf

'The upper limit of the integral is equal to infinity, which is
not obligatory. However, in the beginning we take this for the
sake of simplicity of further formulas.
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integral equation. Because usually it is more convenient to deal

with normalized correlation functions, equation (13) we rewrite in

the following form:

I y)X- A kr. (x - Al f(ydy -mr,(x). (:1

Equation (14 is the original for determination of weight

functions of smoothing.

II. Weight Functions of Optimum Interpolation
and Smoothing

Let us pass now to the solution of system (8)

N

T IrA(--J + k r(. --j)IP.-r(l k-- I, 2,3, ... , N.
M /

The means of solving equation (8), which is presented ]ater,

was used in statistical dynamics of pulse systems [5] as well as in

problems of automatic control [1, 7].

By approximating the correlation function by the sum of model

functions Re)=,A•-'"". we can find the P. solutions by the method

of indeterminate coefficients. Subsequently we will limit ourselves

to approximating the correlation function with only the first term

of the sum, i.e., we set

,itt). e-01%, ( 15 )

where a is determined according to empirical correlation function.

So for the two meteorological elements by which we will conrduct

the calculation (wind and dew point), the distinctions of the

approximated curve from the observed correlation coefficients
(Figs. 1 and 2) we consider as entirely permissible. Therefore we

assume that the correlation function for the dew point will be

67



I'

-- o 1:0 S 0p, am

Fig. 1. Autocorrelation posi-
tion function of the dew point(spring) [2]. 1 - observed,
2 -according to the formula.

-V

S.W • *S 0 ,SO w p.S
I 2 .7 4 .5

Fig. 2. Autocorrelation
function of wind [4]. 1 -

observed, 2 - according to
the formula.

and for wind' r()--#*. where distance p is expressed

in arbitrary units, shown in Figs. 1 and 2. Let us examine from the

beginning the case when the interference is white noise. The corre-

lation function for errors [see formula (6)] can be written:

'During calculations it was accepted .
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* r.(h--i--" If k--mj
. A O1 , if. k+J.

Systems of equations for determination of weights during optimum

interpolation and smoothing can be represented in the form:

r,(k -siPJ+) ).P-.hr,(k), kI, 2 .;. (16)

N

V Nrk -J)P,+T + k k- h.-o0. 1,•2, ...... N. (17)

Let us examine from the beginning system (16). Its solution we look

for in the fornm

P, =A,-J+BJ. .. (18)

Coefficients A, B, y will be determined. Let us substitute

expressions (15) and (18) in original system (16), then we obtain

•[Ae-"B'Jle,"], )+ • (Ae-"l+ Bi")*-Gf-40Z I-i +." • 4h-) + + 8.1 ).

o r~ + + .( A B- " +B C A * ) e- -+

N

+Be - . + - k. I, 2,'... , N.

Having completed the summation and equating coefficients in the

right and left sides at e- y(6yk), e. , ey k we arrive at the equa-

tions for determination of y, A, B:

+ 0•' -0 (19)

'Selection of the form of the solution will be clarified at the
end of the article.
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The order of solution of the system is: from equation (19) we
determine y, and then from system (20) we find A and B. For the

calculation of y, A and B it is possible to make use of the following

formulas

140+p + P+p- 1 + -17-E-1 +• •.(21)
UA p

where

"Pu",-,),€ -,). .
-- I,(,+,_1 )2C NT,_1,.*~e),l, (22 )

A- ((2 -. 2)..) - I)2)

(,e+ -1 2I A' + (eT - F (23)

From formula (21) it follows that y depends on N (quantity of
stations). The second root of equation (19) gives a negative value

of y, which does not have physical meaning. Figure 3 shows y as a
function of A.

42 44 U W
"0.J....'. "- .I . . . . .

"113#5 r £ 2 25. C .a G *5 SOX

F-tg. 3. y as a function of X.

As it appears in the graph, an increase of A decreases values

y as they asymptotically approach a. However, this asymptotic

behavior is achieved for A of the order of 40-50, which is unreal-

itic. Therefore it is possible to assume that always y is more

than a. In other words, the index of weight function y is much more

than the same index for the correlation function.
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The turn now to determination of the weight functions of optimum

smoothing. For this we must solve system of equations (17).

The weight functions we look for (as earlier) in the following

form:

pi- A,,e"h +5 1 ,hi..

The solution of system (17) follows exactly system (16).

As a result of this solution we obtain y - y1 , i.e., the index

of damping of the weight function for optimum y interpolation coin-
cides with the same index y1 for smoothing and is determined by

formula (21). Coefficients A1 and B1 can be found by the formula:

0,," - IN07e,- d')(2

'-, ( +W - )(1+O" ,- ') (25)

Finally let us examine the case when N (number of stations)

increases without limit (N ÷ -). Then from formulas (23) and (25)

it is evident that

8-0 and 8,-0.

The weight functions for optimum P. interpolation and smoothing

have the form:

P,-(•'-I l, 1. 1,I 2,.,
S]-o~. 2...

The change in weight function depending on X for optimum Inter-

p- A# and smoothing A - A 1 . is shown in Fig. 4.

On the graphs are values of weights only for P1 " " By these
is0

data It is possible to establish that weight Is more than weight
0

P1 for all X.
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Fig. 4. Change in weight
O's- . function depending on X for

i --ft •smoothing wind (1) and dew
X points (3) for optimum interpo-

-lation of wind (2) and dew
"points (4).

0 iO24JbO4 0.7 4PA

Let us turn now to the more general case when errors c. are

connected between one another and the correlation function is

assigned by formula

Furthermore, we assume the upper limit of summation N is infi-

nite; then system (8) can be written

lrAk--)+-.r.k--i)P 1 ,r,!,, k -- 1. 2.3. (8')
i-,

The solution of system (8') we look for in the form:

Pj- e- OJ-• DIJ-I, J-- 1. 2.... (26)

Quantities d, C, D will be determined; a[j] is the pulse single

function which is assigned

!. if J--O

,IJ- 10. if 1o0.

Let us substitute in both sides of equation (8') instead of

r (T), rE (T) and P. their expressions, then we arrive at
g .-7
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•"ds-'S- + i-ng +* -+I Ic- + D (j - 11 )

Summing up and equating coefficients in the right and left
- -Qkz -8k&

sides at e , a , # , we arrive at equations for determination
of d, C and D:

e• -- "g -

,P- __ _ _-o. (27)( 1 - I'V -,' ____, _____ -. 4- - 50

C (
P1 _ OP + D - - O.

If we must smooth 10, then, as already was noted above in

formula (8'), the summing must begin with j - 0. The weight function
we find accordin; to formula

= Ct-'J, + D. "1I,

where d as before is determined from equation (27); C1 and D1 can

be found by solving system of equations:

C,

I -*-• + A1 -- ,

C, +(29)

Hence it follows that the difference in weight functions of

interpolation and smoothing is only because of coefficients C and D.

The index of damping of weight function d can be found by

solving equation (27)

21(p. - Dpe". A (pcm-' f) +

) lJt - p" •- , - ,- • - I)iI - pc)F~ -41(p,,- -I• - &(p-- l *( 3fI(e- 1).41 -. ,• ,*p ( 30)
""; - ) P'3
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It is accepted that 8 m 'a and, as noted above, 0 > a, so that m > 1.

Figures 5 and 6 show changes of ed depending on X at m = 2,

3= for the lew point and wind. For large X the quantity d tends

to asymptotically to a. The differenie between a and d becomes

unimportant beginning with X - 25 and more for different m. Thus

again we see that the index of damping of the weight function is

more than for the correlation function, and only at large X do these

indexes differ' little from one another.

ed

0)0o3 2o.3@ o7 07.

Fig. 5. Change of ed depending on X for
wind at different m.

From system (28) we find coefficients C and D for optimum inter-

poiation, and from system (29) C1 and D1 for smoothing. Simple

formulas are obtained:

C Dow ,_(31)

eV - e'), -• D-- e

C, ,. - eD -- 'g) ,D Z. (32)

74



IT-

Ifll I I 142 14 I n" . .

El6

Sed

Z,23, ja aI 20 52X.

d
Fig. 6. Change of e depending on X for
dew point at different m.

III. Solution of Integral Equation for Weight Function

Let us turn again to thn case when the amount of meteorological

element is given for continuous values of argument x. Finding the

weight function of smoothing f(y) led to solving integral equation

(14). Among various means of solving this equation, let us again

examine the means of indeterminate coefficients, which was used in

the second section.

We set again:

S - g-~,r.() - eD

and the solution we look for in the form

f(:) A-*(S)- + A,8(t),

where 6(T) - designates the Dirac delta-function.
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Let us substitute the above quantities into integral equation
(14). After this it is possible to write:

SIIe -, + .e~'-~".,- [A2e-" + A,&(y )j dy +

+ SI[e-Y'-'• + )e-'-"! [A.•-', + Ay)I - - =. (33)

Carrying out the calculations, we compare coefficients of e
-ax - Oe , e-B. We obtain a system for determination of S, A2 , A3.

+ - - , (34)

As_ (35)

From system of equations (34) and (35) let us find S, A , A3

and write the formulas for the weight function:

S -T

(S--)(ý-- )' 1ý, (36)

As,- 2- 2(d- •) %,

Let us examine certain limiting cases. We set a to be small

in comparison with ag, i.e., A turns into zero. Then the index of

damping of weight function S coincides with the index of camping of2 2
the correlation function of errors 8. If Oa/lg grows without limit

(A ÷ c), then S approaches a. Obviously, with finite A we have the

following inequality: a < S < 0.

Let us examine now the particular case of integral equation

(14), when errors of observation bear the character of white noise,

and the upper limit has a finite value, rather large and equal to N.

Then integral equation (14) will pass into a Fredholm equation of
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the 2nd order. '

Nr.(x - y)fAyd + f/(x) - r,(x). (37)

We assume as before r2 (T) = #-aI ; then equation (37) isg
rewritten in the form:

je-...-• f (y)d + •f.(x)- e-,
I

or

fe-1"-') fly Jd3, + Se-"IY-1/f(y)dy + i.f(x)- (38)
II x

The solution of the equations (31) we reduce to the solution of

a differential equation with consent coefficients. For this let us

differentiate twice both-sides of (31) with respect to variable x.

We write the result of the first and second derivatives:

x N

2 f e-'- 'lf (y)dy - 2z/(x) + kf(x) = •e--. (39)

If we substitute in the last formula (39) the magnitude of the

integral for e- - Xf(x) in accordance with (38), then we obtain

1.f'(x) - g2 + ).2)f(x) 0o.

whence we find the solution of the differential equation 2

'Equation (37) can be reached if in the original formula (10)
we smooth over a firt¶te segment of changes x, which is more natural.

In other words, let us take £s(zlAx)a(...On the otner hand, the

assumptions that the upper limit corresponds to the fact that weight
function f(y) turns into zero when y i N.

2 Such a form of the solution was accepted by us for the discrete
case [see formula (18)].
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f(x) - Le - 8-.r + M1EE, (140)

where S,=j"|Zfi!2i. Arbitrary constants , and M will be defined
below from boundary conditions.'

Let us designate

-0ey ayy nd elf(~y- Q.

'• set in formula (38) x = 0 and x = N; we have correspondingly:

e-,yf (yWy +V (0)- I,
N

e--a' e'f (yWy + )f,(N) -

or

0+kf(O)-. -(1

Qo* N + (41() - g, X

Accurately also, setting x - 0 and z N N in formula (39), for

the first derivative we obtain system of equations:

-2 e-2'Q + j.f(N)---= . . (142)

We exclude from system (41) and (42) the introduced quantities

G, Q, we write the system for the boundary conditions:

if(O,-isf(O) = --2z. (43)
"..f(.V) 4 .f(N)'- 0. I

We substitute in equations (43) the values of f(O), f(N), f'(O),

and f'(N) from formula (40). Then we go to a system of equation

for determination L and M:

'In [8] is examined a more general case of the solution of the
Fredholm equation of the 2nd kind with a symmetric nucleus.
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+.X(. )L +fe('+mO j (414)e-.• ..q2 -L +Afe*V(- + 2)-0i 4

I.ii. *0.

Since L and M have been found from system (44), it is simple
to write the formula for the weight function

py•=-. 9,"4 + 2)x ,-,,Y -t 24- ) .8,7 (45)
40;I 7J(7 + IF - (Y - 41-'• qI V(7 + IF-- (a -- 01. "

From this formula it is evident that f(N) at large enough N approaches
zero. For small values of y (at large N) the second term of (45)

is smaller than the first.
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ON THE FILTRATION OF FIELDS OBTAINED AS A RESULT
OF NONLINEAR TRANSFORMATIONS OF THE INITIAL

VALUES OF METEOROLOGICAL FACTORS

L. N. Strizhevskiy

On the basis of the theory of optimum linear
filtration of two-dimensional fields we calculate
filtration operators for fields of the nonlinear
part of vortex advection and the nonlinear part
of the individual wind derivative. It is shown
that applying results of calculations to a simple
scheme of wind forecasting obtains stability
before an unstable system.

Introduction

As is known original meteorological information always contains

errors connected with the measurement and treatment of weather data

and conditioned by the superposition of a whole series of errors:

errors of the measuring devices; errors of the observers; errors

which appear during encoding, decoding, transmission and analysis of

meteorological information etc.

These errors (for analyzed maps) are characterized first of all

by a radius of correlation which is considerably less than the

correlation radius of the "true" fields of meteorological elements,

which allows their partial division. The theoretical basis of such

a division is the theory of optimum linear filtration, an account

of which can be found in the survey article of A. M. Yaglom [71.
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For the first time this theory was applied to a meteorological

problem in a work of F. Thompson [4]., In [2] the operator of

optimum smoothing of the geopotential M500 for the practical corre-
lation function of the observed field was calculated. This work
indicated that during linear transformations of the original field
of the optimur filtration operator does not change.

Otherwise we deal with the acquisition of nonlincar operators

for initial fields. Meanwhile the most important transformations of
meteorological fields used in the process of numerical forecasting
and weather diagnosis are nonlinear.

This work is dedicated to finding formulas for optimum smoothing

of fields obtained as a result of certain widespread nonlinear
transformations of original fields.

In future calculations it is supposed that original fields are
isotropic, uniform, distributed normally, and the mathematical

expectations are equal to zero. We will also use a relationship
given in [6], enabling us to express the moment of the fourth order
of a normally distributed random quantity through its second moments.

d

Filtration of a Vortex Advection Field

As was shown in [6], the spectral density of the nonlinear part
of the vortex advection can be recorded as

s•JI f,) ( [ .,k, - ý-vk,•( - S, -

For further calculations we must give the form of spectral

density functions of the observed geopotential field S (A) and

noise field S (1). In accordance with results of work [6] we take

4o-B) 'P , • It'(2)
Sad, + Pf
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where the parameters take values: B0 (0) a 230 dkm 2; 8 - 10-3 km-1.

Spectral density noise we give as in [2] in the form

(3)

Setting signal and noise as uncorrelated, we write

S,.)S.(4 -- S4.). (14)

Substituting relationships (2), (4) in formula (3) and intro-

ducing (used in (6)) a change of variables:

+ ,-- OS + (+,a). •-f•-+,i(+ (5)

where

and the polar coordinates in plane k:

/I k on.

We obtain the expression for spectral density of the "true" compo-

nent of field J(x, y):

S30 1 Cos, +

V ..- *&mw

30 SWrIP C06, L mS
I~4d " Slniucooa d,,-d.

83i
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The first integral is equal to the right side of formula (1)

and expresses the spectral density of the field J(x, y), calculated

according to observed values of O(z, y), and is found in (6):

Finding the second integral also is not difficult:

S~'coG'6 Sd t d V an -e2s

The third and fourth integrals in expression (6) were found

numerically. The formula for calculating the smoothing operator

we write in the form

where J (Xp) - Bessel function of the ist kind of zero order.

During numerical calculation of operator X(p) the selection of

the upper boundary of integration was dictated by the following

considerations.

In solving forecast problems tre usual assignment of meteoro-

logical fields which take part in the process of precomputation in

The form of a discrete sequence of their values limits from above

the frequency range in spectral decompositions of these fields. In

accordance with the theorem of Kotel'nikov [5] maximum wave numbers

for a right-angled grid in the x, y directions are determined from

where h,, h2 are the grid intervals in the x, M directions. For a

square grid it is apparent that
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For h - 300 km A - 1.5.10- 2  1

Results of calculations according to formula (7) at various

values of parameters a and B (0), characterizing the average scale

Fig. 1.

a) b)

2
4

A

Wso qlk s 4X 40a#

Fig. 1. Weight functions for smoothing
the nonlinear part of vortex advection
B n(O)/B(0) - 0.02 (a), when Bn (O)/B (O) =

- 0.1 (b). 1 - a - 310- kmI- 2 - a -

1.1-10- km-, 3 - a - 0.7.10-3 km-1.

In order to use the obtained function X(p) we found integrals
of form:

36 d.

K,.- j fK(p)Pdpd6,

Replacing values of the neutralized function f(x, y) in a circle
of radius aI and in rings ai-a2 etc. by the universal means In

these ranges ye. ), , f,*,x, y).....we obtain the working formula

for smoothing of the form

r(-, y-)-Aj_., y)'+ K._.,.!, ..jx. y) .. ()
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The system accepted in this work for smoothing is seen in Fig. 2.

The following working formulas for smoothing were used:

B,(O)
B(O) - 0,02

7- 0,9o.- 2W + 0.057Aos.. •

8 Y-.o,877a,.+.+, 0. L IT2 .o o +. ,, + ,V.'4
a - 0,7.I0- 3 IKU- 1,

7=o, _,Wo- + 0,77.2o.J + o.087.o-

I. B(O) -- 1
B#(O)

a - 3,0. 10-3 K-- 1,

7J o,9I _oo + 0o9, 976.O_
a- am 1 •I0- KM-,-,

7 0,79Jo_+m + 0, I9Jaoo + 0,027n.om;
a - 0,7. o0-3 Km- 1,

JU o,627o--.. + 0,2972.o_4 + ooSF..•

2 Fig. 2. Partition of area
S.,during the smoothing and

numeration of points.

t---+ -,. - V 6

Filtration of the Nonlinear Part of the Individual
Wind Derivative

Let us find now the operator of optimum smoothing for an

expression widespread in meteorological applications

F(x, y) u •-+.-,
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where u, v - components of wind velocity.

Let us present F, u, v in the form of stochastic integrals:

R(X, Y)--T*ft'&-z'*sY)dZ~k, ,,,)

F(x, y)- -f ,f.,, h- J dZ.Ak, . 9

Differentiating, we write

F--j.S '-'' dZQ.,A, k2ijtZ 'j,)+).dZ.(v1 , -,2)j.

Substituting the components of wave vector v with the aid of

relationships

,, -).,- kt and 3,,- o--

Setting u and v as independent and in accordance with the results

of [1] spectral densities u and v identical, we obtain the following

expression for spectral density F(X, y):

Sj'(k,, h,)- jI(2), -k,)'+ (.-- I,•S~, ,, ,))Sj(k,--1 , k --).,2)d ,ld',. (10)

As the wind correlation function We took an expression obtained

in [l]

p) 'BO)G(! F)-,( 11 )

where

BA(O)-- 250 u's-', u- 0,797,
? =0,684, 1 -. 1,28.

'For the operator F'(x, y) = u-U + F, obviously, it Is possible

to write

Spe(h,, h,) - " - ,+ ( - hi S* () ) s: S ,-,. - ,81 87



The function of spectral density of noises was assigned in the

form

s.A- 10 £"' (12)

where the parameter b characterizes the position of maximum spectral

density.

Considering relationships (4) and (10), we write the expression

for spectral density of the "true" component of the field F(x, y)

S(k,. *2) - [(2X, - k,)' + X3 - k2)'JSA(X,, X,)S; (k,--.,, h,-),,)d),--d )

-10" *1(-k), +(X2 - k,?] S,•,. 4)S(, -01- X,, k, .!- XW Xd A, +

+ 1' (211 - k,), + k2,/,)11 s.(X,, 2,)S.'(.l - X,, k,--. X,•dXd, +l3

-$,,(2X",,j),+(x-k rj a,,O,, 1)31

wihere

SjQ1, ).j) -d St(XI, 4).~

are determined by formulas (11) and (12).

The first integral in the right side of (13) expresses the

spectral density of field F(x, y), calculated in terms of observed

values of u, v.

Obtained as a result of numrrical integration, functions

S (k, k ) and SF Ci" k%) were, as one would expect, even. Con-F 2' F28

sidering this, and likewise the anisotropism of these functions, let

us write down the expression for optimum smoothing of field F

K 0xSp y(k)-, __)

K(x, y) , . cos(kx+ky) s,,, ,) dkdk,. (14)
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The contour lines of functi'%n K(w, M) for some values of a and

b are given in Fig. 3 (the picture obviously is symmetric with
respect to the axes of coordinates).

M4s0 0 45 4f

Fig. 3. Weight functions Vxz, y) for the
smoothing of field P when B M0/D (0)-

•0.04 and a - 0.7o10-3 km-.

NN

The most interesting result in this case is an ar7isotropism of
the smoothing operator, which is explained by the different character

of change in spectral densities of signal and noise (different degree

of anisotropism) during the transformation (12). We must note that
from the anisotropism of conversion (10) follows immutable aniso-
tropism of XCx, y): any linear anisotropic conversion, for example,
differentiation according to one of the variables, retains the

isotropism of the smoothing operator.

The degree of averaging in the direction of the X axis with

certain characteristics of noises is almost one and a half times

greater than the degree of averaging along the Y axis near the point

to which the value of the neutralized field belongs. With distance

from the origin of coordinates function XCx, y) becomes more

isotropic.

Smoothing formulas were obtained by means analogouz to those

described in the previous section. Let us give the results of
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calculations for certain values of noise parameters (the arrangement

of points is given in Fig. 1):

8i(O) . 0'"
B5(O)

1. b 2.5.10-3 KU-1
1 ) -a. 0,7. 10-'1 ,,-",

T-, 0,72Fo - O.06(F, + Fj + 0,02(PF + F, +,F, + Fe +
+- F--+ F.- + F2. + F4,):
2) a - 0.4 I0-3 KM-'.

FmO.77F",-t-O0,--rF)+-O.016(F,+- +.Fs+F.-+-
F +F,. + F + F4.. ).
11. b -= 2,25-10-3 icu-1

I) a-O,7.O-"4 KN-',

T- 0,5 1,Fo + 0. I251 F2t-,s) + o.022(F, + F,, +.F+ + Pe +,F. +F. +

"+ F2, + F4') + O.0I(F,. + F.. + F3. + F,. + F7. + FA.);
2) a-0.4-1I0-3 Ku-',

-.- 0,55FO + 0, I( -F2 + Fj) + 0,0F, + F, + F6 + F, + F, + F. +
+Fr-+F 4 )+-O.Oi(F.-+Fa.-I- F-.+F-F,,.+Fr,). (15)

Smoothing formulas (15) show that the degree of smoothing

depends mainly on the magnitude of parameter b or, in other wordz,

on the degree of overlap of the spectras of signal and noise. With

an increase in the overlap naturally, it increases.

Using Filtration in the System of Wind Forecasting

Results obtained in the previous section were used in the one-

level system of wind forecasting described in [3].

Here briefly is its variant, using as raw data the fields of

actual wind.

Motion equations are written in the form:

where u, v' are the components of the deviation of wind from

geostrophic;
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its #M AN or
•r'j-- +'•+*•"

The remaining designations are generally accepted. The Ageo-

strophic part of the stream function is connected to u', ti' by the

relationships:

'----4L,; '--. (17)

Values of V' can be determined according to the field of prac-

tical wind from the balance equatior

Further, with the aid of relationships (17) we find u' and v'

and integrate equations (16) ovtr time. The integration was in

Lagrangian coordinates, which was connected with interpolation of

the values of wind components every grid interval in the inside

areas of the grid squares. The latter led to noticeable leveling

of results.

Attempts to integrate these equations in Euler coordInates with

the aid of relationships:

u~~+ a li - vifa) 31

,(*. 3in.,4al jt/fa'KAMI#444 + too-) (18)

where n is the number of the time interval, were unsuccessful - in

the absence of smoothing the system was unstable. Its stability was

achieved after a number of experiments by smoothing in accordance

with the above results. On every time step the smoothing was carried

out twice: the sums of the nonlinear terms in the right side of

equations (18) by formula (15), while the most successful results

were obtained with the following values of parameters:
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-- 0.04, b 2.-- 1• 0-3 Kv-1.

and weak smoothing of wind components according to formula

imO.94as+O.O18,;aa.

where u is the wind component.

Results of the estimation of forecast quality are in Table 1,
where j. Z-ý, - mean absolute error of wind prognostication, !Aj,!-

mean modulus of vectorial wind variability for twenty-four hours.

Integration of forecast equations for formulas (18) using

precalculated smoothing somewhat improved results in comparison with
the earlier variant systems, which is connected in our opinion

basically with obtaining more practical values of the absolute

values of wind velocity. Furthermore, utilization of formulas (18)

considerably simplified the computer program and shortened calcu-
lation time in comparison with the previous variant.

Table 1.
SBilinenur interpolation. OptiLru filtration

(Laz•anglan cooordinates) (Euler coordinates)

', (--.) (.n/.
L~evel 700 abaz'

0300 2 ?tr 1960 5.7 O M.
0300 3 lar 1960 1.4 0.75 k3 0A7
C300 4 ?r 1960 7.0 0.77 4A O*
030C 5 ?-r 1960 73 OA $A 0.78

0300 2e Fab 1961 S,4 O GA
1500 20 Feb 1961 12.6 0,7S 74

Level 750 abar

0300 4 Ma 196 • J 3.4OA S I
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OBJECTIVE ANALYSIS OF THE GEOPOTENTIAL FIELD USING
SUPPLEMENTAL INFORMATION

V. D. Sovetova

Two methods of objective analysis are
described. The first method is dedicated to the
analysis of the isobaric surfaces of the tropo-
sphere over the northern hemisphere, and the
second to analysis of stratospheric levels over
Eurasia. To improve the quality of analysis
over incompletely treated regions and at high
altitudes additional information is used.

Numerical analysis and forecasting the baric field over the

northern hemisphere is hampered in regions incompletely covered by

meteorological information. The quality then drops off [7] over

water surfaces or the Pacific, Atlantic, Indian Oceans, and over

Africa, where there are few points of radiosounding of the atmo-

sphere. On the other hand, for example, the territory of Eurasia

Dn the whole is well covered by the data of observations in the

troposphere and unsatisfactorily in the stratosphere. Therefore for

improvement of analysis in such cases it Is expedient to use addi-

tional information. Two methods of restoration and analysis of the

geopotential field are considered: the firts Is developed for the

troposphere, and the second for the strotosphere.

The first problem is solved for the northern hemisphere (grid

of 1545 points, intervals at 470 km) and for four levels of the
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troposphere - 1000, 850, 500 and 300 mbar. At the surface of the

earth there were sufficient data for a successful analysis in almost

all regions of the northern hemisphere. The quantity of information

sharply falls upon transition to the higher-lying isobaric surfaces

(850, 500, 300 mbar), where there are data only for the points of

atmospheric sounding. To supplement information at these levels one

could use the data of measurements of the surface field of pressure.

For this purpose for interpolation onto points of a regular grid,

except radiosonde stations (, - 589), station of making only ground

observations (n a 290) have been used. Over the oceans sources of

additional information are observations of 48 ships of the merchant

marine.

The quantity of information on 100 and 850 mbar was substantially

different, therefore before objective analysis were reconstructed

absent measurements of the geopotential at 850 mbar according to

available data of surface pressure; the absent information for

300 mbar was reconstructed according to data for 500 mbar.

Reconstruction of unavailable information was conducted by the

method of spatial optimum interpolation [3] using mutual correlation

functions of the geopotential [8] for 1000 and 850 mbar, 500 and

300 mbar. Reconstruction could have used simultaneously the data of

the lower and original levels. However, because information at the

original level as a rule is absent in those points around which at
a distance of the radius of correlation there are no data of obser-

vations, for its reconstruction the information of five stations of

one lower level better covered by meteorological information was

used. One of these five stations had to lie on one vertical line

with the station of the original level, and the remaining four were

selected such that each of them covered one of the four quadrants

arranged around the reference station. When in the circle with the

correlation radius it was not possible to find four symmetric

stations in which there would be data of measurements, any four

stations were selected, Independently of their arrangement around a

point. But even if this condition could not be made, reconstruction

used the information of only one lower point.
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As a result of the reconstruction, subsequently in the inter-

polation onto regular grid points of the geopotential of 1000 and

850 mbar 879 stations can take part; objective analysis of the baric

field of ý00 and 300 mbar is carried out from the data of 589

radiosonde stations.

To estimate the quality of the reconstruction by the above

means a numerical experiment was conducted by means of the artificial

exclusion of the entire information on 850 mbar. The mean square

error of reconstruction of the geopotential of 850 mbar from the

data of 0300 21 January 1964 was 4.6 dam over all the northern
hemisphere, 3.3. dam over North Americaand 4.3 dam over western
Europe. The geopotential of 500 mbar was reconstructed analogously
from data for 850 mbar with a mean square error of 5.0 dam; data for
300 mbar was reconstructed from data for 500 mbar with a mean square

error of 7.6 dam. Taking into account that under practical condi-
tions reconstruction of information is necessary only in the inade-

quately covered regions and the obtained errors are somewhat less

than the corresponding deviations from climatic standards which must

be used here, the results of the reconstruction can be considered

satisfactory.

Comparison of standardized autocorrelation functions of the

geopotential showed the proximity of functions for 1000 and 850 mbar

and also the proximity of the functions of 50C and 300 mbar. The

difference of correlation functions 6ecween the first and second

pairs of surfaces is rather substantial. In connection with this

the objective analysis of the reconstructed fields was carried out

in two stages: is from the beginning for isobaric surfaces of 1000
and 850 mbar, after that for another pair of surfaces - 500 and 300

mbar.

The objective analysis was conducted by the method of optimum

interpolation [4]. Not descrlbin3 all units of the program, let us

stop only on its separate parts, determining the distinction of our

methodologies from the methodology accepted at the Hydrometeoro-

logical Center of the USSR (6].
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1. For the characteristic features of the average climatic

fields of the geopotential (of standards) on 1000 and 500 mbar were

assigned fields, calculated in NIIAK [I]. Standards for two other

surfaces (850 and 300 mbar) were calculated by the formula:

z.- i2,.+
you -- YM. + -- 2

where K- - average climatic value of the thickness of the layer
between the corresponding isobaric surfaces, figured according to

the formulas:

for winter

.- 32.50sinY'+ 7.5 sin+ 140.

for summer

ALm-ý8,5(91n ?)P+ 27A swp + 140.
A 2so- - 3 4 .3 ('sIn ?F+ 7,5usin?+ 365.

Comparison of actual standards of the geopotentia2l for 850 and

300 mbar with calculated standards showed their close correspondence.

2. The stations were situated in such a way that their ordinal

numbers increased along the band and from one band to another. The

first station of every band took on the feature by which the bands

were estimated. During interpolation onto the point with coordi-

nates x, y the number of bands was calculated beginning from the

first, and the sum was equated with y - 3. The comparison determined

in which half of the bands (right or left) the point is located.

Only those stations which were located in the same half as the point

and which were located in the band between (y - 3) and (y + 3) were

tested to see if they belonged to the neighborhood of the considered

point. As soon as they began to follow stations with coordInates

more than (Y + 3), the search ceased.
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3. The interpolation onto regular grid points was conducted

in the following manner. From the beginning an attempt was made to

select the eight nearest stations, two stations in each quadrant. If

this requirement was not fulfilled, eight asymmetrical stations were

used. If in the whole square of 6 x 6 grid intervals there were not

eight stations with data from observations, the choice went to four

stations satisfying the requirement of symmetricity. If four

asymmetrical stations were lacking, only two stations were used. To

calculate the weight coeifficients a system of equations of the eighth,

fourth or second order was made up, depending on how many stations

with measurement data were found.

On the edges of the map frequently it was not possible to find

in a given square even two stations. In this instance in points on

1000 and 850 mbar the corresponding climatic values were used.

Usually these points were in the southern latitudes, where the

dispersion8 were small, and that is why the absolute errors of calcu-

lation were small.

On 500 and 300 mbar the interpolation onto points was done from

eight or four stations. With fewer stattons interpolation was

replaced by extrapolation from the lower surface analogously the

reconstruction of lacking information. The only difference is that

in the first case the information was reconstructed for a station,

and in the second case for a regular grid point according to data

for a point located on the underlying surface (850 mbar). After

this procedure the value of the geopotential in a point at 300 mbar

was calculated by means of extrapolation to the upper level of the

value in the same point of 500 mbar. In these cases spatial extrapo-

lation of deviations from stanidard along one lower point was con-

ducted.

Comparison of results of objective and synoptic analyses

obtained mean square errors of comparison for two types of points.

The first type includes points to which interpolation was produced

according to the data of the considered level; the second type
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includes points to the values of geopotentials which showed the

effect of extrapolation from below or these values are equal to the

middle climatic value. Errors in decameters are presented in

Table 1.

Table 1.

Surface, mbar ................ 1000 850 500 300

a dam:

first type ................ 1.7 2.8 2.9 6.5

second type ............... 2.1 2.9 6.0 8.9

As can be seen from the tables, using standards on the edges

of the map instead of interpolated values increases the eiror of

comparison by 0.4 dam on 1000 mbar; the increase of error (by 0.1

dam) on 850 mbar is entirely insignificant. On 500 and 300 mbar the

error of comparison substantially increases for cases of extrapol-

lation from below (to 3.1 and 2.4 dam, respectively). This increase

can be explained uniquely, because it is conditioned not only by the

difference of methods of calculation, but also by the considerable

drop in quality of synoptic analysis at these levels.

Comparison of the amounts of deviations (Table 1) with standard

deviation, which is given in a work of S. A. Mashkovich and S. I.

Gubanova [7], indicates the better quality of objective analysis of

1000 mbar geopotential surfaces for our method. Here, obviously,

we see the effect both the using the additional information, and

using the autocorrelation function of the considered level in calcu-

lations instead of the function of the geopotential at 500 mbar for

all levels.

To estimate the effect on numerical analysis of the additional

information over sea water surfaces the following experiment was

conducted. The data of ships of the merchant marine were artifi-

cially excluded and the obtained analysis was equated with the

analysis of the usual variant. Mean square errors a, obtained during
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the comparison of these two analyses, are given in Table 2. Here

is shown the number of points n in which was discovered the differ-

ence in these analyses.

Table 2.

Surface, mbar.... 1000 850 500 300

a dam ..................... 9.2 9.2 10.6 12.9
n ....................... 214 207 211 211

As can be seen from this table, measurements of pressures on
48 ships show the effect on values of the geopotential in large

quantities of regular grid points, and the difference in analyses is

rather considerable. For 1000 mbar, where the oceans are covered

considerably bette:! by the information than at heights and, conse-

quently, synoptic enalysis is more reliable, the objective analysis

in the absence of data from additional ships was compared with

synoptic analysis. It turned out that the absence of additional

ships increases the mean square error of objective analysis over

oceans in comparison with synoptic analysis by 8.G dam, i.e., it can

be considered that the effect of additional information on the

results of numerical analysis is rather considerable.

During the analysis of calculated fields of pressure ovwr all

the northern hemisphere it was explained that in the inadequately

covered water surfaces of the oceans during extrapolation from lower'

levels to 500 and 300 mbar deeper cyclones thau noted on the oper-

ational ccnstant-pressure charts are obtained. The authenticity of

the calculated values is difficult to verify, because synoptic

analysis in these regions is accomplished according to the data of

the observations of one or two stations. However, the wind data

allow proposing the presence here of gradients greater than noted

on the map. For example, 21 January 1964 in the center of a cyclone

over the Atlantic Ocean (420 north lat. and 370 west long.) our

calculations obtain a value of the geopotential for 500 mbar of

512 dam. On a constant-pressure map prepared by the forecasters at

100
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GMTs SSSR [Hydrometeorological Center USSR] in the center of this

cyclone a height of 517 dam is nQted; on the map of another fore-

casting institution in the center of the cyclone a height of 530 dam

is noted. Thus, our data differ in the first case by 5 dam, and in

the second by 18 dam. The actual depth of the cyclone and its

accurate location are unknown inasmuch as in the range of the cyclone

there are observations of only individual stations.

The second problem was solved for levels of the stratosphere

over the territory of Europe and Asia (29 x 22 grid, interval 450 km).

The primary surface whose data (geopotential Z and temperature t)

were used for the reconstruction of information on higher levels was

200 mbar. Selecting this surface avoids the effect of tropopause;

losses of information at this level in comparison with 300 mbar are

insignificant (2-3%).

Analysis of our autocorrelation functions of the geopotential

for stratospheric levels showed a substantial difference between

functions for 100 mbar and for 300 and 200 mbar. Therefore analysis

at 100 mbar was conducted using the autocorrelation functions corre-

sponding to this level.

After monitoring the original Z and t data [5], the missing Z

and t information was reconstructed at the primary 200 mbar level by

the method of optimum interpolation [4] according to the observations

of eight stations. Values at stations located on the edges of the

maps were reconstructed in some other way. For these stations (n =

= 60) separately from the general field the field of pressure and

temperature was assigned according to a previous map (radiosonde

data if available, or values taken from isohypses). In the absence

of information after a similar period, the values of pressure and

temperatures at the regional stations their values in a previous

period of observations were taken. As a result of reconstruction

on 200 mbar we had data about geopotential and temperature in 439

points.
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Using further the mutual correlation functions of temperature

[2), by the method of spatial interpolation [3) the missing tempera-

ture was reconstructed on 100 mbar (note that the missing information

at this level comprises 15-20% of the relative surface at 300 mbar,
not including erroneous data). Then according to the average

temperature of the layer the height of the surface at 100 mbar was

resolved in the points where there was no or rejected information.

Before objective analysis all available information was again

monitored. Rejected data were reconstructed by the method of optimum

interpolation on a fixed level. Because the accepted methodology

of reconstruction of information allows having at all levels always

the same number of data, it is possible to attach at every regular

grid point the very best located stations according to the data of

which the interpolation will be carried out. In the first place

objective analysis was conducted for the central rectangle (24 x 16

points), then for surrounding rectangles using already calculated

values in certain points lying on the contour of the central rec-

tangle.

Bibliography

1. Aeroklimaticheskiy atlas severnogo polushariya (Aeroclimatic
atlas of the northern hemisphere). t.%., 2, NIIAK, 1961.

2. Boltenkov V. P. Issledovaniye statisticheskoy makrostruktury
temperatury vozdukha (Investigation of the statistical macrostructure
of air temperature). Tr. GGO, vyp. 165, 1964.

3. Boltenkov V. P. 0 trekhmernom ob"yektivnom analize polya
temperatury vozdukha (Three-dimensional objective analysis of the
temperature field of air). Tr. GGO, vyp. 191, 1966.

4. Gandin L. S. Ob"yektivnyy analiz meteorologicheskikh poley
(Objective analysis of meteorological fields). Gidrometeoizdat, L.,
1963.

5. Krichak M. 0. Opyt ob"yektivnogo kontrolya iskhodnykh
dannykh pri operativnom prognoze polya geopotentsiala (Experiment in
objective control of raw data in operational forecasting of the
geopotential field). Collection "Ob"yektivnyy analiz i prognoz
meteorologlcheskikh elementov," Izd. AN SSSR, M., 1963.

102



6. Mashkovich S. A. Ob ob"yektivnom analize kart baricheskoy
topografii severnogo polushariya (Objective analysis of constant-
pressure maps of the northern hemisphere). Tr. MMTs, vyp. 4, 1964.

7. Mashkovich S. A., Gubanova S. I. Opyt primeneniya metodiki
ob"yektivnogo analiza kart baricheskoy topografii sevarnogo
polushariya (Experiment in using the methodology of objective analy-
sis of constant-pressure maps of the northern hemisphere). Tr.
MMTs, vyp. 10, 1965.

8. Fortus M. I. Trekhmernaya prostranstvennaya struktura
polya geopotentsiala (Three-dimensional spatial structure of the
geopotential field). Tr. 000, vyp. 165, 1964.

103



Improving the Methodology of Forecasting Baric
Field to Several Days

Mashkovich S. A., Transactions GMTs, 1968,
No. 19, pp. 3-9

A generalization is made of a prediction system proposed earlier
by S. A. Mashkovich and Ya. M. Kheyfets (Transactions TsIP, No. 93).
The generalization consists of recording the effect of horizontal
turbulent mixing in the vortex equation and the effect of surface
friction. The latter is introduced when the boundary condition at
sea level for the vertical component of velocity is r4corded. The

original equations are vortex and beat influx equations, linearized
relative to the zone of motion. A three-level model of the atmo-
sphere is considered. Motion is assumed to be quasi-solenoidal. The
solution for the stream function is looked for in the form of a series
in spherical functions. The problem was solved by computer. Seven-
teen series of forecast maps for a period up to four days were cal-
culated. The quality of the forecasts for four days is estimated.
Thanks to the generalization of the system it was possible to
diminish the absolute forecast error on the average by 15-20%. In
July 1966, the composition of forecasts of ground pressure by this
system became operational.

Table 1, Ill. 1, Bibl. 3.

One Finite-Difference Algorithm for the Solution of
the Vortex Equation for the Middle Troposphere

Over the Northern Hemisphere

Isayev N. V. and Fuks-Rabinovich M. S., Transactions
GMTs, 1968, No. 19, pp. 10-21

A system for forecasting the geopotential at the middle tropo-
sphere over the northern hemisphere is examined. To prevent non-
linear instability a finite-difference approximation of nonlinear
terms was used, proposed by A. Arakava. With such an approximation
there is conservation of the quadratic integral features, i.e.,
conservation on the forecast range of the integrals of the vorticity
rate, its square and kinetic energy. Integration in time was con-
ducted using several methods, among which most suitable was the
Adams method.

The system was used to execute calculations over a long period
in order to steady the character of change in kinetic energy of
forecast fields H in time. It turned out that the finite-

difference algorithm allows calculation of a forecast over long
periods, moreover the kinetic energy of forecast fields during cal-
culation remains practically constant. Results of testing the
system over a period of up to three days are presented, and a
quantitative and qualitative analysis of the obtained forecast fields
are given.

Table 3, Ill. 5, Bibl. 14.
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Experiment in the Numerical Solution of Balance EquationsWithin the Framewo'rk of a •usi-Solenoidal System o~f
Forecas•ig the deopotential on the

Northern Hemisphere

Sitnikov I. G. and Krichak S. 0., Transactions
GMTs, 1968, No. 19, pp. 22-30

A finite-difference system for solving the balance equation on
the northern hemisphere is given, and a number of characteristic
features found with the solution of this equation within the frame-
work of the quasi-solenoidal system of forecasting the geopotential
at the middle troposphere.

For solving the balance equation the method of successive
approximations is used, and the balance equation is reduced to a
Poisson equation relative to the stream function and values of the
right side are determined from the previous approximation. One
feature of the solution of the balance equation is the reduction of
the rate of convergence of the Iteration process in the low latitudes.

Obtained as a result of solving the balance equation, the field
of the stream function is used as the original for the quasi-
solenoidal forecast based on a baratropic model. At the end of each
forecast period, i.e., after 24, 48 and 72 hours, the geopotential
field is located by inversion of the balance equation, i.e., solving
it relative to the geopotential according to the known distribution
of the stream function.

An example of calculating a forecast from the quasi-solenoidal
model is presented, and it is compared with a quasi-geostrophic
forecast.

Ill. 6, Bibl. 9.

About Research on Warming Trends in the Stratosphere
Using Numerical Experiments

Barg B., Mashkovich S. A., Transactions GMTs,
1968, No. 19, pp. 31-43

The evolution of a narrow band of temperature perturbation In
the stratosphere is studied. The starting equations are those
proposed by A. S. Dubov (Transactions GGO, No. 124). The investi-
gation is conducted according to stylized initial conditions: it
assumes that the original temperature perturbation has a circular
form and occupies a limited range. An initial disturbance of the
baric field is absent. Finite-difference approximation of equations
is described, a numerical method of solution is formulated, the
calculating stability of the solutlon is investigated.
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Preliminary results are given on the basis of which the following
basic conclusions are made:

1) the range of temperature perturbation Ased in the calcula-
tions does not substantially affect circulation in the stratosphere,
specifically, the polar vortex does not break down;

2) perturbation in the temperature field also causes a pertur-
bation of the baric field, the range of which grows in the consid-
ered period of time (4-6 days), while the range of the temperature
perturbation diminishes;

3) maximum pressure perturbation remains during the first 48
hours at the same latitude on which the temperature perturbation lay,
then the geopotential perturbation shifts to the north, while the
temperature perturbation remains at the original latitude.

Table 1, Ill. 4, Bibl. 10.

Application of the Theory of Filtration of Random
Processes to Certain Problems in

Objective Analysis

Ovchinskiy B. V., Transactions GMTs, 1968,
No. 19, pp. 44-57

Formulas are set for calculating weight functions of optimum
interpolation and smoothing meteorological elements when correlation
function of the true magnitude (signal) and observation errors
(noise) are known.

During optimum interpolation oneo;ust take into account that
the data of observations contain rando1 errors, and aia aLtempt is
made to achieve a magnitude of the meteorological element in a
regclar grid point free from these random errors. If the examination
includes small-scale fluctuations, then it is necessary to reject
the assumption of noncorrelatability of the random errors. This
circumstance was pointed out by Thompson, who used the theory of
filtration of random processes for optimum smoothing of meteoro-
logical fields.

The structure and features of weight functions were studied
both for discrete and continuous data of observations. The problem
of determining weight functions reduces to solving the integral
Wiener-Hopf equation (or a discrete model of the Wiener-Hopf equation
tion). Of the various ways of .olving this equation tht method of
indeterminate coefficients was used; in this case the correlation
function is approximated by the sum of the model functions.

Cases of a soluticn when errors jf observation are "white noise"
or when the number of stations increases without limit are examined
also.

Il. 6, Bibl. 11.
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Filtration of Fields Obtained as a Result of Nonlinear
Transformations of the Original Values of

Meteorological Elements

Strizhevskiy L. N., Transactions GMTs, 1968,
No. 19, Pp. 58-66

It is assumed that observable values of meteorological elements
are the sum of their actual values and measurement errors. The
statistical characteristics of such summary fields are known from
the results of treatment of the data of observations, and statistical
characteristics of the error fields were assigned on the strength of
certain general considerations about the relationships of scales and
Intensities of fields of true values and noises.

On the basis of the theory of optimum linear filtratinn of two-
dimensional fields filtration operators are calculated for two
nonlinear transformations of original fields widespread in meteo-
rology: the nonlinear part of vortex advection and the nonlinear
part of the individual wind derivative. In obtaining the corre-
sponding formulas the assumption of statistical isotropism and homo-
geneity of the original fJelds is used. Furthermore, it Is assumed
that the investigated meteorological elements are distributed
normally.. Calculations are conducted for various values of scales
and Intensities of the error field corresponding to the various
degrees of complete treatment and the accuracy of measurements over
the different regions. The theoretically obtained filtration oper-
ator for the nonlinear par of the individual wind derivative is
used in a one-level diagr•u of wind forecasting, which achieved
definite improvements in comparison with the variant of the system
which did not use smoothing.

Table 1, Bibl. 7.

Objective Analysis of the Geopotential Field Using
Supplemental Information

Sovetova V. D., Transactions GMTs, 1968,
No. 19, pp. 7?-77

Two methods of objective analysis of a baric field are described,
and results of calculations based on one of them are given.

The first method is developed for the geopotential field of
isobaric surfaces of the troposphere (1000, 850, 500 and 300 mbar)
over the northern hemisphere. In poorly treated information of
regions of the northern hemisphere apart from data of radiosonde
stations additional information in the form of results of the mea-
surement of pressure over the surface of the earth was used: over
the oceans observations of ships of the merchant marine were used.
Using mutual correlation functions of the 5eopotential r7l, the
method of spatial optimum Interpolation [2] reconstru:teJ 71sslng
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information on 850 mbar from the data of measurements of the pressure
field over the surface of the earth; at 300 mbar data from 500 mbar
was used. Objective analysis of the geopotential by the method of
optimum interpolation [3] was conducted at first for one after that

for another pair of surfaces with corresponding levels by the mean
autocorrelation functions. Results of calculations showed a sub-
stantial improvement of the quality of objective analysis, especially
over oceans.

The second method was developed for levels of the stratosphere
over Europe and Asia. The problem of reconstruction oP missing
information at high altitudes and subsequent objective analysis of
the baric field according to more complete raw data of observations
was solved. As the basic isobaric surface according to the data of
which the informationwas reconstructed 200 mbar was used. The
additional information in this instance air temperature was used.
During the first stage of solving the prob:-m by the method of
spatial optimum interpolation the missing temperature measurements
were reconstructed on 100 inbar. Then based on the average tempera-
ture of the layer and the height of the underlying surface the height
of the 100 mbar surface was figured. Objective analysis was car-led
out always for the same number of stations, which made it possible
to attach preliminarily to each point the eight best located stations
and to interpolate to grid point according to their information.

Table 2, Bibl. 7.
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An attempt was made to derive formulas for the optimum smoothing of
fields obtained from certain nonlinear transformations of the initial
fields. The Jinitial fields were assumed to be isotropic and un~iform,
with a no~cial distribution and a mathematical expectancy of zero. The
statistical characteristics of sulmmary fields were derived from the
evaluation of empirical data, whereas the statistical characteristics
of the error fields were derived frcm certain general considerations,
regarding the ratios of the scales and intensities of the fields of
the true values, and of the noise. The filtration operators were
computed for two nonlinear transforms of the initial fields, i.e., for
the nonlinear advection component of the vortex, and for the nonlinear
component of the individiual derivative of the wind. The calculations
were performed for different values of the scales and intensities of
the field of errors that corresponded to different degrees of exposure
and measurement precision over different areas. The theoretically
obtained filtration operator for the nonlinear component of the wind'vý
derivative was used in a one-level diagram of the wind forecast. It
is believed that this approach brings somewhat better results, as
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art, has: 13 figures, 18 formulas, i table. (AT05025211)

D ""0"1 73 1________ ________

serunty ~S(CI-



UNCLASSIFIED

4. LINK A LINK LIN_ C
KEY WOaOag

SOLE 0? SOLl[ St lO LE i 6?I

Geostrophic wind
Filtration
Geopotential forecasting
Wind profile
Correlation statistics

I

I

,t

/ " UNClASS IFED

hcuntyClasui___tbe



UNClASS-IFIED

t ~ .~ DCIANT CONTROL DATA -R&

Foreign Technology Division UNCLASSIFIED
Air Force System- Command b4fOJ

U. S. Air Force
0. 0*11t TITLK

OBJECTIVE ANALYSIS OF THE GiEOPOTENTIAL FIELD USING SUPPLEMENTAL
INFORMATION

4. @S~AgT~v hoTl (~e . u~Vmi a~mg hi.)

TRANSLATION
S. Au THONd) (Ffivt nme. iWJO Wb. [Sol.5 "a ,)m

Sovetova, V. D.

0- AIRPORT OATS 96 j TOTAL 0O0 OF PA6611 0. OP71's

as, COWNTIACT on 00140T 16O 1&. ONIOINATORWS REPORIT NMIR1

V. POJRCT NOh. 6o1o3 FTD-MTI-24-i74f-70

W.ib OTHIERI 111PORT 00O119 (Any7 .AW nUbi0M A&$ mio be .. e1.ed
"KWa oseei)

DIATASKT69-oi-69 _________________

Distribution of this document is unlimited. It may be relecqed to
the Clearinghouse, Department of Comimerce, for sale to the general
public. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _11. OUPPLIKU111I vN OTES "Wag1. SPONSORIU4 MINLITARY ACTIVITY

Foreign Technology Division
Wright-Patterson AFB, Ohio

Two methods of objective analysis of the baric field are described.
The first method is applicalbe to the field of the geopotential of
isobaric surfaces, I.e., for four levels of the troposphere over the
northers hemisphere. In additia.. to the data collected by radiosonde
staticuns in areas of the northern hemi.sphere, that have a low exposure,
additional information was used: Pressure measurements at the surface
of the earth and data collected by merchant marine vessels. U.sing the

L crass-correlation functions of the geopotential, the information
lacking at the 850mb isobaric level asrcconstructed from-' data
obtained from the measurement of th',e prit-asure fiel-d at the eartCh'-
surface. The data lacking at the 3-) -b level were reconst'-ucted1 fror
neasurements performed at the 500O mb level. Using the~ mehod -4f
optimal ina;_-rpolatior., the geop-otential was anal,-zed ':.....'--el~y fl-rct
4'c:1,- and -1e for the other pair of surfaces, -sn ý tmlcabl
a-IA-oco~relation functions. The computtations indIcat-e a cotidrable
water areaz. -71e second method was developed speci!fical"' for h
5tratosoher-ic leve-l- of Europe and As'la. The Problem no~vild %1th
re-duction of inf~ormAt-ion thrat was not avmIi-able for higlw- ievcLs, zuv:
a iusqetob, eitivc ana2lysis- of the barlC field fron ;r comrPlC4t*
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